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ABSTRACT 

 

In this paper, an adaptation scheme is proposed to adapt the gains of the classical SMC to 

overcome some of the problems faced in practical implementations of motion control 

systems. A Lyapunov function is selected for classical SMC design and MIT rule is used for 

gain adaptation. The criterion that is minimized for gain adaptation is selected as sum of 

squares of control signal and sliding function. This novel approach is also applied to control 

of a scara type robot manipulator. 
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INTRODUCTION 

 

In most of the motion control applications, the system dynamics or the parameters may change with 

time. For this kind of systems, the robust control techniques should be chosen to overcome these 

changes. 

A powerful control technique for alleviating the problem of parameter changes is the use of 

Variable Structure System (VSS) theory with a Sliding Mode Control (SMC) [1]. It is also a 

technique easy to use since only the bounds on the parameters need to be known. 

As a result of the classical SMC design by selecting a Lyapunov function, the control input is 

calculated as the sum of the equivalent control and an additional term [2]. Equivalent control is the 

control that makes the derivative of the sliding function equal to zero. The additional term which is 

directly proportional to the sign of the sliding function is used to compensate the deviations from the 

sliding surface. 

The classical SMC suffers mainly from two disadvantages. The first one is the chattering which 

is high frequency oscillations of the controller output. The second one is that the complete knowledge 

of the plant dynamics is needed in the calculation of the equivalent control. In literature, there are 

some suggestions to solve these problems. The well known chattering elimination technique is the 

use of a saturation function [3]. On the other hand, computational burden of the equivalent control 

can be avoided with using least square (LS) estimation or recursive LS [4]. 

In this paper, a gain adaptation scheme is proposed which directly results in chattering-free 

control action. A different estimation mechanism to compute the equivalent control is also used. 

The proposed approach is applied to control of a scara type robot which is a two degrees of 

freedom planar robot manipulator. The dynamics consists of nonlinear coupled equations [5]. The 

kinematics and inverse kinematics are used for trajectory generation. 

The paper is organized as follows: Next section is devoted to the SMC approach and its 

implementation via the estimation of equivalent control. In section III, a gain adaptation technique for 

SMC is proposed, which uses the well-known MIT rule [4]. Section IV, consists of simulation 



 

examples of a robotic manipulator and aims to asses the performance of the proposed adaptation 

technique. Section V concludes the paper. 

SLIDING MODE CONTROL (SMC) 

The Variable Structure System (VSS) theory has been applied to control nonlinear processes [6,7]. 

One of the main features of this approach is that one only needs to drive the error to a “switching 

surface” or “sliding surface”, after which the system is in “sliding mode” and will not be affected by 

any modeling uncertainties and/or disturbances. 

Most of the systems can be written in the state space form representation as, 

 x t f x Bu t


 ( ) ( ) ( )              (1) 

where x is (nx1) state vector, f is a nonlinear function of x, B is (nxm) input gain matrix, and u is 

(mx1) input. For this kind of systems, generally, sliding surface-S (mx1) is selected [2] as, 

S x t G x t x t t S xr
a( , ) ( ( ) ( )) ( ) ( )                  (2) 

where 

 ( ) ( )t G x tr ,           S x G x ta ( ) ( )                  (3) 

and x
r
 represents the reference state vector and G (mxn) is the slope matrix of the sliding surface. In 

this kind of representations, the system states have to include the derivatives for second and higher 

order systems.  

The aim in SMC is to force the system states to the sliding surface. Once the states are on the 

sliding surface, the system errors converge to zero with an error dynamics dictated by the design of 

the matrix G. 

 

Classical Sliding Mode Controller (CSMC) 

The method described in this section is based on the selection of a Lyapunov function. The control 

should be chosen such that the candidate Lyapunov function satisfies Lyapunov stability criteria 

[2,8]. A Lyapunov function for each independently controlled axis of a motion control system is 

selected as, 
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2
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where m is the number of the axes. Clearly, this function is positive definite. 

It is aimed that the derivative of the Lyapunov function is negative definite. This can be attained 

if one can assure that 

dV
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D S sign S

i
i i
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D is a scalar positive gain value. Taking the derivative of the (4), and equating this to (5), one will 

obtain the following equation, 

S
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By taking the time derivative of (2) and using the plant equation, 
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is obtained. By putting the (7) into the (6), the control input signal can be obtained as, 

u t u t D G B sign Si eqi i i i i( ) ( ) ( ) ( )  1               (8) 

where, u teq ( )  is the equivalent control and can be written as, 
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Estimation of the Equivalent Control 



 

If the knowledge of f(x) and B matrices is very poor, then the equivalent control calculated will be too 

far off from the actual equivalent control. In the literature a number of approaches are proposed for 

the estimation of ueq , rather than calculating it.  

In this paper, a recent approach [2] is used keeping in mind the fact that the equivalent control is 

actually the average of the total control [1]. An averaging filter for calculation of the equivalent 

control can be designed as, 

 ~ ( ) ~ ( ) ( )u t u t u teq eqi ii



      (10) 

or 
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p
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where ~ueq i
 is an estimate for ueq i

 and p d dt / . The average of the control is computed and fed 

back to calculate the control to be applied in the next control cycle. This method requires less 

knowledge about the system, and thus alleviates some of the problems resulting from the 

uncertainties in the plant. 

Equation (11) is actually a low-pass filter. The value of  1/  gives the cut-off frequency. The 

logic behind the designing a low pass filter is that low frequencies determine the characteristics of the 

signal, and high frequencies result from unmodeled dynamics.  

Now, one can choose the control as follows, 

u t u t D G B sign Si eq i i i ii
( ) ~ ( ) ( ) ( )  1       (12) 

where ~ ( )u teqi
 is defined as in (11). 

 

 

ADAPTIVE SLIDING MODE CONTROL (ASMC) 

 

Classical SMC causes to chattering. The sign of the additional term (  D G Bi Ý Ý

1) to equivalent control 

changes its sign when Si rings around zero. If one takes this additional term as constant, chattering is 

faced. When it reaches the sliding surface, this term should be minimized. An adaptation scheme to 

minimize the control effort and sliding function is proposed using the MIT rule. The criterion which 

is minimized is chosen as, 
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To make Ji small it is reasonable to change the parameters (Di) in the direction of the negative 

gradient of Ji, i.e., 
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Substituting (13) into (14) and taking the partial derivative, 
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Taking the partial derivative of (8) with respect to Di, 
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The partial derivative of Si with respect to Di can be calculated as, 
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Substituting (8) into (1) and taking the integral of it, (17) can be written as, 
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Substituting (19) and (16) into the (15), 
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is obtained. When selecting the Lyapunov function, there was a restriction on Di being a positive 

value. Therefore, calculated Di passed through a limiter as, 

D
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The lower value of Di is selected as 0.05 instead of 0, in order to suppress the error arising from the 

estimation of the equivalent control. 

 

ROBOTIC APPLICATION 

 

Robot Dynamics 

The work presented in this paper considers a robot with a two degrees of freedom planar manipulator. 

A detailed description of the dynamics of the robot is given in [5]. By selecting the state vectors as, 

x11 1   x12 1


  x21 2  x22 2


       (22) 

where i’s (i=1,2) are the joint angles (see Fig.1). The state space representation can be given as, 
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where, 
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Now, the plant equations can be written in a more convenient matrix form as, 
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and the definition of f1  and f2  are obvious from (23). 

 

Simulation Results 

In simulation studies carried out, with proper selection of gain matrices, the system perfectly follows 

the desired trajectory for both of the controllers designed above. In all simulations, it is intended to 

control a scara type robot manipulator to follow such a square trajectory in X-Y plane as presented in 

Fig 2.  



 

The control is implemented with both constant and adapted gains. Instead of calculating the 

equivalent control the estimation technique given by (11) is used in both cases. The G and D matrices 

are selected as,  G G1 21 1     D D1 21   . 

 The simulation results for classical SMC 

(CSMC) are presented from in Figs 4-6. In this 

case, the manipulator follows the desired 

trajectory, but the controller outputs make 

chattering as shown in Fig6. 

 The error for adaptive SMC is much better 

then the classical one. The controller outputs 

make some chattering at the beginning and then 

becomes smooth when it reaches the sliding 

surface. The results are presented in Figs 7-9. 

 The essential tuning parameters in 

adaptation are  i ’s in equation (20). When 

selecting a value 

Figure 1.  Robot Kinematics   for    i ,   there  are  two  criterion;  adaptation 

      capability and stability. While a low value causes to 

low adaptation capability, a high value may cause to instability. As a result, a sufficiently large value 

that does not make the system unstable should be chosen. The results presented here are obtained by 

1 2 50, .  and 1 2 10,
' . . Only some of the simulation results are presented in this paper because of 

space unavailability. But the other results are similiar to the presented ones. 

 

CONCLUSIONS 

 

In this paper, an adaptation scheme using MIT rule is applied to adapt the gains of the classical SMC 

which is designed by selecting a Lyapunov function. The aim is to eliminate the chattering and to 

reduce the error. Therefore, the cost function of MIT rule is selected as sum of squares of the control 

signal and the sliding function. 

The real reason of the chattering in classical SMC is the unnecessary control effort. As a result of 

the design, the controller is obtained as equivalent control plus an additional term. The additional 

term is necessary when the system is not on the sliding surface. This term takes the system on to the 

sliding surface. The equivalent control is enough to keep the system on the sliding surface when the 

system on the sliding surface. Therefore, the additional term should be minimized when the system 

reach on the sliding surface. This minimization can be achieved by minimizing the multiplicative gain 

Di .This is the crucial point of using the adaptation. The additional term should be minimized, but 

actually not to be made zero because the system may keeps away from the sliding surface any reasons 

such as external disturbance or sharp changes in the reference signal.  It is meaningful to use a limiter 

with a minimum of 0.05 for Di . 

The simulation results presented in this paper indicate that the suggested approach has 

considerable advantages compared to the classical one and is capable of achieving a good chatter-free 

trajectory following performance without an exact knowledge of plant parameters. These 

characteristics make it a promising approach for motion control applications. 
 

 



 

  
Figure 2. The Motion on X-Y Plane  Figure 3. Parameters D1 & D2 for ASMC 

  
      Figure 4. Angle errors for CSMC        Figure 7. Angle errors for ASMC 

 

  
     Figure 5. Phase Plane 2 for CSMC      Figure 8. Phase Plane 2 for ASMC 

 

  
Figure 6. Controller Output 2 for CSMC    Figure 9. Controller Output 2 for ASMC 
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