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The chiral clock spin-glass model with q = 5 states, with both competing ferromagnetic-
antiferromagnetic and left-right chiral frustrations, is studied in d = 3 spatial dimensions by
renormalization-group theory. The global phase diagram is calculated in temperature, antiferro-
magnetic bond concentration p, random chirality strength, and right-chirality concentration c. The
system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase,
and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the
disordered phase boundary and form a spectrum of devil’s staircases, where different ordered phases
characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the
disordered phase, bordered by fragments of regular and temperature-inverted devil’s staircases, are
seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing
videos.

PACS numbers: 75.10.Nr, 05.10.Cc, 64.60.De, 75.50.Lk

I. INTRODUCTION

The presence of chiral interactions, motivated by ex-
perimental systems [1–5], can result in extremely rich
phase transition phenomena in otherwise simple systems
[6]. In this respect, we study here a q = 5 state clock
spin-glass model in d = 3 spatial dimensions, using
renormalization-group theory. Our system has both com-
peting ferromagnetic and antiferromagnetic interactions,
as in the usually studied spin-glass models [8], and com-
peting left-chiral and right-chiral interactions [6]. We
have studied q = 5 states, because odd number of states
have built-in entropy for antiferromagnetic interactions,
even without quenched randomness and frustration.[7]
The global phase diagram is calculated in temperature,

antiferromagnetic bond concentration p, random chiral-
ity strength, and right-chirality concentration c. We find
an extremely rich phase diagram, with a ferromagnetic
phase, a multitude of different chiral phases, a chiral spin-
glass phase, and a critical (algebraically) ordered phase
[9, 10]. The ferromagnetic and chiral phases accumulate
at the disordered phase boundary and form a devil’s stair-
cases [11, 12], where different ordered phases characteris-
tically intercede at all scales of phase-diagram space. In
fact, a continuum of devil’s staircases is found. Shallow
and deep reentrances of the disordered phase, bordered
by fragments of regular and temperature-inverted devil’s
staircases, are seen. The extremely rich phase diagrams
are presented as continuously and qualitatively changing
videos [13].

II. THE q−STATE CHIRAL CLOCK

DOUBLE SPIN GLASS

The q−state clock spin glass is composed of unit
spins that are confined to a plane and that can only point

along q angularly equidistant directions, with Hamilto-
nian

− βH =
∑

〈ij〉

Jij~si.~sj =
∑

〈ij〉

Jij cos θij , (1)

where β = 1/kBT , θij = θi − θj , at each site
i the spin angle θi takes on the values (2π/q)σi

with σi = 0, 1, 2, . . . , (q − 1), and 〈ij〉 denotes that
the sum runs over all nearest-neighbor pairs of sites.
As a ferromagnetic-antiferromagnetic spin-glass system
[8], the bond strengths Jij , with quenched (frozen)
ferromagnetic-antiferromagnetic randomness, are +J >
0 (ferromagnetic) with probability 1−p and −J (antifer-
romagnetic) with probability p, with 0 ≤ p ≤ 1. Thus,
the ferromagnetic and antiferromagnetic interactions lo-
cally compete in frustration centers. Recent studies on
ferromagnetic-antiferromagnetic clock spin glasses are in
Refs. [7, 14, 15].
In the q−state chiral clock double spin glass intro-

duced here, frustration also occurs via randomly frozen
left or right chirality [6]. The Hamiltonian in Eq. (1) is
generalized to random local chirality,

− βH =
∑

〈ij〉

[Jij cos θij +∆ δ(θij + ηij
2π

q
)]. (2)

In a cubic lattice, the x, y, or z coordinates increase as
sites along the respective coordinate direction are consid-
ered. Bond-moving as in Fig. 1(a) is done transversely to
the bond directions, so that this sequencing is respected.
Equivalently, in the corresponding hierarchical lattice,
one can always define a direction along the connectiv-
ity, for example from left to right in Fig. 1(b), and as-
sign consecutive increasing number labels to the sites. In
Eq. (2), for each pair of nearest-neighbor sites 〈ij〉 the
numerical site label j is ahead of i, frozen (quenched)
ηij = 1 (left chirality) or −1 (right chirality), and the
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delta function δ(x) = 1 (0) for x = 0 (x 6= 0). The overall
concentrations of left and right chirality are respectively
1− c and c, with 0 ≤ c ≤ 1. The strength of the random
chiral interaction is ∆/J , with temperature divided out.
With no loss of generality, we take ∆ ≥ 0. Thus, the
system is chiral for ∆ > 0, chiral-symmetric for c = 0.5,
chiral-symmetry-broken for c 6= 0.5. The global phase di-
agram is in terms of temperature J−1, antiferromagnetic
bond concentration p, random chirality strength ∆/J ,
and chiral symmetry-breaking concentration c.

III. RENORMALIZATION-GROUP METHOD:

MIGDAL-KADANOFF APPROXIMATION AND

EXACT HIERARCHICAL LATTICE SOLUTION

We solve the chiral clock double spin-glass model
with q = 5 states by renormalization-group theory, in
d = 3 spatial dimensions, with length rescaling factor
b = 3. We use b = 3, as in previous position-space
renormalization-group calculations of spin-glass systems,
because it treats ferromagnetism and antiferromagnetism
on equal footing. Our solution is, simultaneously, the
Migdal-Kadanoff approximation [16, 17] for the cubic lat-
tice and the exact solution [18–22] for the d = 3 hier-
archical lattice based on the repeated self-imbedding of
leftmost graph of Fig. 1(b). Fig. 1(a) shows the Migdal-
Kadanoff approximate renormalization-group transfor-
mation for the cubic lattice, composed of the bond-
moving followed by decimation steps. Fig. 1(b) shows
the exact renormalization-group transformation for the
hierarchical lattice. The two procedures yield identical
recursion relations.
Exact calculations on hierarchical lattices are also cur-

rently widely used on a variety of statistical mechanics
problems.[23–39]. On the other hand, this approximation
for the cubic lattice is an uncontrolled approximation, as
in fact are all renormalization-group theory calculations
in d = 3 and all mean-field theory calculations. However,
as noted before [40], the local summation in position-
space technique used here has been qualitatively, near-
quantitatively, and predictively successful in a large va-
riety of problems, such as arbitrary spin-s Ising models
[41], global Blume-Emery-Griffiths model [42], first- and
second-order Potts transitions [43, 44], antiferromagnetic
Potts critical phases [9, 10], ordering [45] and superflu-
idity [46] on surfaces, multiply reentrant liquid crystal
phases [47, 48], chaotic spin glasses [49], random-field
[50, 51] and random-temperature [52, 53] magnets includ-
ing the remarkably small d = 3 magnetization critical
exponent β of the random-field Ising model, and high-
temperature superconductors [54].
Under the renormalization-group transformation de-

scribed below, the Hamiltonian of Eq. (2) maps onto
the more general form

− βH =
∑

〈ij〉

Vij(θij), (3)

(a)

(b)

FIG. 1. (a) The Migdal-Kadanoff approximate
renormalization-group transformation for the cubic lat-
tice, composed of the bond-moving followed by decimation
steps, with the length rescaling factor b = 3. The corre-
sponding hierarchical lattice is obtained by the repeated
self-imbedding of the leftmost graph in (b). (b) The exact
renormalization-group transformation for this d = 3 hierar-
chical lattice. The two procedures yield identical recursion
relations.

where θij = θi − θj can take q different values, so that
for each pair < ij > of nearest-neighbor sites, there are
q different interaction constants

{Vij(θij)} =

{Vij(0), Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ)} ≡ Vij , (4)

which are in general different at each locality (quenched
randomness). Here, δ ≡ 2π/5 is the angle between con-
secutive clock-spin directions. The largest element of
{Vij(θij)} at each locality < ij > is set to zero, by sub-
tracting the same constant G from all q interaction con-
stants, with no effect on the physics; thus, the q−1 other
interaction constants are negative.
The local renormalization-group transformation is

achieved by the sequence, shown in Fig. 1, of bond mov-
ings

Ṽij(θij)− G̃ =

bd−1∑

k=1

V
(k)
ij (θij), (5)

and decimations

eV
′

14
(θ14)−G =

∑

θ2,θ3

eṼ12(θ12)+Ṽ23(θ23)+Ṽ34(θ34), (6)

where G̃ and G are the subtractive constants mentioned
above, and prime marks the interaction of the renormal-
ized system.
The starting double-bimodal quenched probability dis-

tribution of the interactions, characterized by p and c as
described above, is not conserved under rescaling. The
renormalized quenched probability distribution of the in-
teractions is obtained by the convolution [55]

P ′(V′
i′j′) =

∫ 




i′j′∏

ij

dVijP (Vij)




 δ(V′
i′j′ −R({Vij})),

(7)
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FIG. 2. (Color online) Calculated sequence of phase diagrams for the ferromagnetic (p = 0), on the left side of the figure,
and antiferromagnetic (p = 1), on the right side, systems with quenched random left- and right-chiral interactions. The
horizontal axis c is the concentration of right-chiral interactions. Phase diagrams for different random chirality strengths
∆/J are shown. The system exhibits ferromagnetic (F), a multitude of different chiral, and spin-glass (S) ordered phases.
On some of the chiral phases, the δ multiplicity of the asymptotically dominant interaction is indicated. The ferromag-
netic and chiral phases accumulate as different devil’s staircases at their boundary with the disordered (D) phase. The
antiferromagnetic system also exhibits an algebraically ordered (A) phase. The full richness of the continuum of widely
varying devil’s staircase phase diagrams can also be seen in video form, four of which are accessible as Supplemental
Material [13]. These four videos are also accessible at http:// web.mit.edu/physics/berker/temperatureDeltac0scanp.avi,
web.mit.edu/physics/berker/temperatureDeltac05scanp.avi, web.mit.edu/physics/berker/temperaturecp1scanDelta.avi,
web.mit.edu/physics/berker/temperaturecp0scanDelta.avi

where Vij ≡ {Vij(θij)} as in Eq. (4), R({Vij}) repre-
sents the bond moving and bond decimation given in Eqs.
(5) and (6), and primes refer to the renormalized system.
Similar previous studies, on other spin-glass systems, are
in Refs. [7, 14, 56–63]. For numerical practicality the
bond moving and decimation of Eqs. (5) and (6) are
achieved by a sequential pairwise combination of interac-
tions, each pairwise combination leading to an interme-
diate probability distribution resulting from a pairwise
convolution as in Eq. (7).

We effect this procedure numerically, first starting with
the initial double delta distribution of Eq. (2) giving
4 possible interactions quenched randomly distributed
throughout the system, and generating 1000 interactions
that embody the quenched probability distribution re-
sulting from the pairwise combination. Each of the gen-
erated 1000 interactions is described by q interaction con-
stants, as explained above [Eq. (4)]. At each subsequent
pairwise convolution as in Eq. (7), 1000 randomly cho-
sen pairs, representing quenched random neighbors in the
lattice, are matched by (5) or (6), and a new set of 1000

interactions is produced. As a control, we have also calcu-
lated phase diagrams given below using 1500 interactions
and the phase diagrams did not change.

Our calculation simply consists in following the
recursion relations, Eqs.(5-7) to the various fixed points
and thereby mapping the initial conditions that are
the basins of attraction of the various fixed points.
This map is the phase diagram: The different ther-
modynamic phases of the system are identified by the
different asymptotic renormalization-group flows of
the quenched probability distribution P (Vij). Two
renormalization-group trajectories starting at each side
of a phase boundary point diverge from each other,
flowing towards the phase sinks (completely stable fixed
points) of their respective phases. Thus, the phase
boundary point between two phases is readily obtained
to the accuracy of the figures. We are therefore able to
calculate the global phase diagram of the chiral clock
double spin-glass model.
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FIG. 3. (Color online) Calculated sequence of phase diagrams for the left-chiral (c = 0), on the upper side of the figure,
and quenched random left- and right-chiral (c = 0.5), on the lower side, systems with quenched random ferromagnetic and
antiferromagnetic interactions. The horizontal axis is the random chirality strength ∆/J . The consecutive phase diagrams are
for different concentrations of antiferromagnetic interactions p. The system exhibits ferromagnetic (F), a multitude of different
chiral, and spin-glass (S), and critical (algebraically) ordered (A) phases. On some of the chiral phases, the δ multiplicity of the
asymptotically dominant interaction is indicated. The ferromagnetic and chiral phases accumulate as different devil’s staircases
at their boundary with the disordered (D) phase. Note shallow and deep reentrances of the disordered phase at p = 0.4 and
p = 0.7, respectively, surrounded by regular and temperature-inverted devil’s staircases. The full richness of the continuum of
widely varying devil’s staircase phase diagrams can also be seen in video form, four of which are accessible as Supplemental
Material [13]. These four videos are also accessible at http:// web.mit.edu/physics/berker/temperatureDeltac0scanp.avi,
web.mit.edu/physics/berker/temperatureDeltac05scanp.avi, web.mit.edu/physics/berker/temperaturecp1scanDelta.avi,
web.mit.edu/physics/berker/temperaturecp0scanDelta.avi

IV. GLOBAL PHASE DIAGRAM OF THE q = 5
STATE CHIRAL CLOCK DOUBLE SPIN GLASS

The global phase diagram of the q = 5 state chiral
clock double spin-glass model in d = 3 spatial dimen-
sions, in temperature J−1, antiferromagnetic bond con-
centration p, random chirality strength ∆/J , and right-
chirality concentration c, is a four-dimensional object, so
that only the cross-sections of the global phase diagram
are exhibited.

Figs. 2 show the calculated sequence of phase diagrams
for the ferromagnetic (p = 0), on the left side of the fig-
ure, and antiferromagnetic (p = 1), on the right side,
systems with quenched random left- and right-chiral in-
teractions. The horizontal axis c is the concentration

of right-chiral interactions. Phase diagrams for different
random chirality strengths ∆/J are shown. The system
exhibits ferromagnetic (F), a multitude of different chiral,
and spin-glass (S) ordered phases. The antiferromagnetic
system also shows an algebraically (A) ordered (critical)
phase, in which every point is a critical point with diver-
gent correlation length [9, 10]. In all cases, the ferromag-
netic and different chiral phases accumulate as different
devil’s staircases [11, 12] at their boundary with the dis-
ordered (D) phase. The definition of the devil’s staircase
is that this accumulation is seen at every expanded scale
of the phase diagram variables. This accumulation at
every expanded phase diagram scale is indeed revealed
from our calculations, as seen further below.

Figs. 3 show the calculated sequence of phase dia-
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100-fold zoom. The devil’s staircase structure appears at each zoom level.

grams for the left-chiral (c = 0), on the upper side, and
quenched random left- and right-chiral (c = 0.5), on the
lower side, system with in both cases quenched random
ferromagnetic and antiferromagnetic interactions. The
horizontal axis is the random chirality strength ∆/J .
The consecutive phase diagrams are for different concen-
trations of antiferromagnetic interactions p. The sys-
tem exhibits ferromagnetic (F), a multitude of differ-
ent chiral, spin-glass (S), and algebraically ordered (A)
phases. The ferromagnetic and different chiral phases
accumulate as different devil’s staircases [11, 12] at their
boundary with the disordered (D) phase. Note shallow
and deep reentrances of disorder [48, 64–67] at p = 0.4
and p = 0.7, respectively, surrounded by regular and
temperature-inverted devil’s staircases.
Fig. 4 shows the phase diagram cross-section in the

upper left of Fig. 3, with a calculated 10-fold zoom and
with 100-fold zoom. The devil’s staircase structure ap-
pears at each zoom level.
The full richness of the continuum of widely varying

devil’s staircase phase diagrams can best be seen in video
form, four of which are accessible as Supplemental Ma-
terial [13]. These four videos are also accessible at http://
web.mit.edu/physics/berker/temperatureDeltac0scanp.avi,
web.mit.edu/physics/berker/temperatureDeltac05scanp.avi,
web.mit.edu/physics/berker/temperaturecp1scanDelta.avi,
web.mit.edu/physics/berker/temperaturecp0scanDelta.avi.
These videos effectively exhibit a very large number of
calculated phase diagram cross-sections.

V. ENTIRE-PHASE CRITICALITY,

DIFFERENTIATED CHAOS IN THE

SPIN-GLASS AND AT ITS BOUNDARY

The renormalization-group mechanism for the
algebraically ordered (critical) phase is that, all
renormalization-group trajectories originating inside

this phase flow to a completely stable fixed point
(sink) that occurs at finite temperature (finite coupling
strength).[9, 10, 68–76] In all other ordered phases, the
trajectories flow to strong (infinite) coupling.

In the ferromagnetic phase, the interaction Vij(0) be-
comes asymptotically dominant. In the chiral phases,
in the renormalization-group trajectories, one of the
chiral interactions from the right-hand side of Eq.
(4), {Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ)}, becomes asymp-
totically dominant. However, in each of the sep-
arate phases, it takes a characteristic number n of
renormalization-group transformations, namely a length
scale of 3n, to reach the dominance of one chiral inter-
action. This distinct number of iterations, namely scale
changes, determines, by tracing back to the periodic se-
quence in the original lattice, the pitch of the chiral phase
in the original unrenormalized system. Thus, the chi-
ral phases in the original unrenormalized system, with
distinct chiral pitches, are distinct phases. After the
dominance of one chiral interaction, the renormalization-
group trajectory follows the periodic sequence Vij(δ) →
Vij(3δ) → Vij(4δ) → Vij(2δ) → Vij(δ) resulting from
matching q = 5 and b = 3.

Our calculation is exact for the hierarchical lattice pic-
tured in Fig. 1(b) therefore for which the phase diagrams
in Fig. 2 and 3 are exactly applicable. However, our cal-
culation is approximate for the cubic lattice, as pictured
in Fig. 1(a). Thus, one could speculate that in the cubic
lattice, the multitude of chiral phases would appear as
a single chiral phase with a continuously varying pitch:
Fig. 5 shows all the chiral phases merged into a single
phase. It is seen that a quite unusual phase diagram still
appears, with the interlacing of the ferromagnetic phase
with the chiral phase, throughout the bulk of the phase
region.

The renormalization-group trajectories starting in the
chiral spin-glass phase, unlike those in the ferromagnetic
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the bulk of the phase region. The left side of this figure is derived from the left portion of Fig. 2; the right side is derived from
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or chiral phases, do not have the asymptotic behavior
where at any scale a single potential V(theta) is domi-
nant. These trajectories of the spin-glass phase asymp-
totically go to a strong-coupling fixed probability distri-
bution P (Vij) which assigns non-zero probabilities to a
distribution of Vij values, with no single Vij(θ) being
dominant. Projections of this distribution (a function
of five variables) are shown in Fig. 6. This situation is
a direct generalization of the asymptotic trajectories of
the ±J Ising spin-glass phase, where a fixed probability
distribution over positive and negative values of the in-
teraction J is obtained, with no single value of J being
dominant [14].

Since, at each locality, the largest interaction in
{Vij(0), Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ)} is set to zero and
the four other interactions are thus made negative, by
subtracting the same constant from all five interactions
without affecting the physics, the quenched probability
distribution P (Vij), a function of five variables, is actu-
ally composed of five functions Pσ(Vij) of four variables,
each such function corresponding to one of the interac-
tions being zero and the other four, arguments of the
function, being negative. Fig. 6 shows one of the latter
functions: The part of the fixed distribution, P3(Vij),
for the interactions Vij in which Vij(3δ) is maximum

and therefore 0 (and the other four interactions are neg-
ative) is shown in this figure. The projections of P3(Vij)
onto two of its four arguments are shown in each panel of
this figure. The other four Pσ(Vij) have the same fixed
distribution. Thus, chirality is broken locally, but not
globally.

Another distinctive mechanism, that of chaos un-
der scale change [49, 77, 78] or, equivalently, under
spatial translation [14], occurs within the spin-glass
phase and differently at the spin-glass phase bound-
ary [14], in systems with competing ferromagnetic and
antiferromagnetic interactions [14, 49, 62, 77–105] and,
more recently, with competing left- and right-chiral in-
teractions [6]. The physical hierarchical lattice that
we solve here is an infinite system, where 1000 quin-
tuplets {Vij(0), Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ)} are ran-
domly distributed over the lattice bond positions. Thus,
as we can fix our attention to one lattice position and
monitor how the quintuplet at that position evolves un-
der renormalization-group transformation, as it merges
with its neighbors through bond moving [Eq. (5)] and
decimation [Eq. (6)], and thereby calculate the Lyapunov
exponent [14, 62], which when positive is the measure of
the strength of chaos.

Fig. 7 gives the asymptotic chaotic renormalization-
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shown in each panel of this figure. The other four Pσ(Vij)
have the same fixed distribution. Thus, chirality is broken
locally, but not globally.

group trajectories of the spin-glass phase and, dis-
tinctly, of the phase boundary between the spin-glass
and disordered phases. The chaotic trajectories found
here are similar to those found in traditional (Ising)
spin-glasses [14, 62], with of course different Lya-
punov exponents seen below. The five interactions
Vij(0), Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ) at a given location
< ij >, under consecutive renormalization-group trans-
formations, are shown in Fig. 7. As noted, chaos is mea-
sured by the Lyapunov exponent [14, 62, 96, 106, 107],
which we here generalize, by the matrix form, to our
multi-interaction case:

λ = lim
n→∞

1

n
ln
∣∣∣E
( n−1∏

k=0

dvk+1

dvk

)∣∣∣, (8)

where the function E(M) gives the largest eigenvalue of
its matrix argument M and the vector vk is

vk = {vij(0), vij(δ), vij(2δ), vij(3δ), vij(4δ)}, (9)

with vij(σδ) = Vij(σδ)/ < |Vij(σδ)| >, at step k of the
renormalization-group trajectory. The product in Eq.
(8) is to be taken within the asymptotic chaotic band,
which is renormalization-group stable or unstable for the
spin-glass phase or its boundary, respectively. Thus, we
throw out the first 100 renormalization-group iterations
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FIG. 7. Chaotic renormalization-group trajectories of the
spin-glass phase (bottom) and of the phase boundary between
the spin-glass and disordered phases (top). The five interac-
tions Vij(0), Vij(δ), Vij(2δ), Vij(3δ), Vij(4δ) at a given location
< ij >, under consecutive renormalization-group transforma-
tions, are shown. The θij = σδ angular value of each interac-
tion Vij(θij) is indicated in the figure panels. Bottom panel:
Inside the spin-glass phase. The corresponding Lyapunov ex-
ponent is λ = 2.01 and the average interaction diverges as
< |V | >∼ byRn, where n is the number of renormalization-
group iterations and yR = 0.26 is the runaway exponent. Top
panel: At the phase boundary between the spin-glass and
disordered phases. The corresponding Lyapunov exponent is
λ = 1.70 and the average non-zero interaction remains fixed
at < V >= −0.99. As indicated by the Lyapunov exponents,
chaos is stronger inside the spin-glass phase than at its phase
boundary.

to eliminate the transient points outside of, but leading
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to the chaotic band. Subsequently, typically using 1,000
renormalization-group iterations in the product in Eq.
(8) assures the convergence of the Lyapunov exponent
value λ, which is thus accurate to the number of signifi-
cant figures given. Spin-glass chaos occurs for λ > 0 [96]
and the more positive λ, the stronger is chaos, as seen for
example in the progressions in Figs. 6 and 7 of Ref. [62].
In the spin-glass phase of the currently studied system,
the Lyapunov exponent is λ = 2.01 and the average inter-
action diverges as < |V | >∼ byRn, where n is the number
of renormalization-group iterations and yR = 0.26 is the
runaway exponent. At the phase boundary between the
spin-glass and disordered phases, the Lyapunov exponent
is λ = 1.70 and the average non-zero interaction remains
fixed at < V >= −0.99. As indicated by the Lyapunov
exponents, chaos is stronger inside the spin-glass phase
than at its phase boundary.

VI. CONCLUSION

It is thus seen that chirality and chiral quenched
randomness provides, in a simple model, remarkably rich

phase transition phenomena. These include a multitude
of chiral phases, a continuum of widely varying devil’s
staircases, shallow and deep reentrances of the disordered
phase surrounded by regular and temperature-inverted
devil’s staircases, a critical phase, and a chiral spin-glass
phase with chaotic rescaling behavior inside and differ-
ently at its boundary. The widely varying continuum of
devil’s staircase phase diagrams are best seen in video
form, four of which are accessible as Supplemental Ma-
terial [13]. These four videos are also accessible at http://
web.mit.edu/physics/berker/temperatureDeltac0scanp.avi,
web.mit.edu/physics/berker/temperatureDeltac05scanp.avi,
web.mit.edu/physics/berker/temperaturecp1scanDelta.avi,
web.mit.edu/physics/berker/temperaturecp0scanDelta.avi.
Finally, the study of an even number of q states, which
do not have a built-in entropy as mentioned above,
should yield equally rich, but qualitatively different
phase diagrams.
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(TÜBA) is gratefully acknowledged.

[1] S. Ostlund, Phys. Rev. 24, 398 (1981).
[2] M. Kardar and A. N. Berker, Phys. Rev. Lett. 48, 1552

(1982).
[3] D. A. Huse and M. E. Fisher, Phys. Rev. Lett. 49, 793

(1982).
[4] D. A. Huse and M. E. Fisher, Phys. Rev. 29, 239 (1984).
[5] R. G. Caflisch, A. N. Berker, and M. Kardar, Phys. Rev.

B 31, 4527 (1985).
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