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Frustrated Potts: Multiplicity Eliminates Chaos via Reentrance
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Boğaziçi University, Bebek, Istanbul 34342, Turkey
2Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey

3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

The frustrated q-state Potts model is solved exactly on a hierarchical lattice, yielding chaos under
rescaling, namely the signature of a spin-glass phase, as previously seen for the Ising (q = 2) model.
However, the ground-state entropy introduced by the (q > 2)-state antiferromagnetic Potts bond
induces an escape from chaos as multiplicity q increases. The frustration versus multiplicity phase
diagram has a reentrant (as a function of frustration) chaotic phase.

Frustration [1], meaning loops of equal-strength inter-
actions that cannot all be simultaneously satisfied, di-
minishes ordered phases in the phase diagram and may
drastically change the nature of certain ordered phases.[2]
For example, the so-called Mattis phase, where spins are
ordered in random directions but interactionwise consis-
tently with each other, becomes a spin-glass phase with
the introduction of the smallest amount of frustration [3],
with residual entropy, unsaturated order at zero temper-
ature, and the chaotic rescaling of the interactions, as
measured by a positive Lyapunov exponent. The lat-
ter, chaos under scale change, is the signature of the
spin-glass phase [4–12], as gauged quantitatively by the
Lyapunov exponent. Chaotic interactions under scale
change dictate chaotic correlation functions as a function
of distance.[13]
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FIG. 1. Top row: Construction of a hierarchical lattice, from
Ref.[14]. The renormalization-group solution of a hierarchical
lattice proceeds via renormalization group in the opposite di-
rection of its construction. Middle row: The two units used in
the construction of the frustrated hierarchical lattice.[4] On
the left is the correlation repressing unit and on the right the
frustrated unit. The wiggly bonds are infinitely strong an-
tiferromagnetic couplings. Bottom row: The assemblage of
the units for the construction of the frustrated hierarchical
lattice.

In fact, chaos under rescaling was seen in frustrated
systems, with no randomness, with the exact solution
of hierarchical lattices.[4–7] Spin-glass chaos was ushered

by a sequence of period doublings, which were shown
to also convert to chaotic bands under randomness.[5]
Spin-glass chaos and its positive Lyapunov exponent was
also calculated in the renormalization-group solution of
systems where frustration is introduced by quenched
randomness.[3]
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FIG. 2. Lower panel: The onset of chaos, by period doubling,
under increased frustration for the q = 3-state Potts model.
For each pb, the renormalization-group flows are in the vertical
direction. The full lines represent attractive fixed points, limit
cycles, and chaotic bands. The dashed lines represent the
unstable fixed points, only some of which are shown. The
tanh(K) = 0 points are the stable fixed points which are the
sinks of the disordered phase. The upper panel shows the
calculated Lyapunov exponents. The upper inset shows the
chaotic renormalization-group trajectory for pb = 28.

Another important venue for ground-state degeneracy
is in the ground-state participation of the multiplicity of
spin states, as seen in antiferromagnetic (q > 2)-state
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Potts models.[15–17] In the current work, we have stud-
ied the combination of both effects, chaos from frustra-
tion and degeneracy from multiplicity of states. We have
exactly solved the q-state Potts models on the frustrated
hierarchical model as in Ref.[4] We find that the system
escapes chaos through multiplicity and that chaos shows
reentrant behavior.
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FIG. 3. The q = 6-state Potts model, under increased frus-
tration, after the onset of chaos, leaves chaos through a set of
reverse period doublings. The upper inset shows the chaotic
renormalization-group trajectory for pb = 42.

The model is constructed, by combining two units, em-
bodying the different microscopic effects of competing in-
teractions. The Hamiltonian of the system is

− βH = K
∑

〈ij〉

δ(si, sj), (1)

where β = 1/kBT , at site i the spin si = 1, 2, , ..., q can
be in q different states, the delta function δ(si, sj) = 1(0)
for si = sj(si 6= sj), and the sum is over all interacting
pairs of spins, represented by straight lines in Fig. 1. In
unit C, the correlations are repressed but not eliminated
along the path of the unit, as m2 > m1 always and the
competing correlation on the longer unit is weaker. Unit
B is frustrated: the competing paths are of equal length.
By combining in parallel pc and pb units C and B, a fam-
ily of models is created. In this work, we have explored
m1 = 2,m2 = 3, p = 4, pc = 1 and varying the num-
ber pb of frustrated units. Hierarchical models are solved
exactly, by renormalization-group theory, proceeding in
the reverse direction of the construction of the hierarchi-
cal model and obtaining, by decimating the interior spins
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FIG. 4. The q = 8-state Potts model, under increased frus-
tration, through a set of period doublings followed by reverse
period doublings, bypasses chaos.
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FIG. 5. As the number q of Potts states increases, the sys-
tem leaves chaos through reverse period doublings. Note the
horizontal scale change in the figure at q = 15. For this
calculation, pb = 40. The upper inset shows the chaotic
renormalization-group trajectory for q = 5.
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of each level (black circles in Fig. 1), obtaining recursion
relations K ′ = K ′(K) exactly.[14, 18, 19]
The onset of the chaotic bands, as the number pb of

frustrated units is increased, is shown in Fig. 2, for the
number of Potts states q = 3. The calculated Lyapunov
exponents [20, 21],

λ = lim
n→∞

1

n

n−1
∑

k=0

ln
∣

∣

∣

dKk+1

dKk

∣

∣

∣
, (2)

where Kk is the interaction at step k of the
renormalization-group trajectory. The sum in Eq.(2) is
to be taken within the asymptotic trajectory, so that we
throw out the first 100 renormalization-group iterations
to eliminate the transient points and subsequently use
600 iterations in the sum in Eq.(2), which assures conver-
gence in the chaotic bands. It is seen that the Lyapunov
exponent is non-positive outside chaos, barely touching
zero at each period doubling.
However, for q = 6 in Fig. 3, as frustration is increased,

the system leaves chaos through a series of reverse period
doublings (foldings). We thus have non-chaos reentrance
[22] around the chaotic phase. For q = 8, shown in Fig.
4, doublings and foldings succeed, but chaos has disap-
peared. We can therefore look for reverse bifurcations as
the number of Potts states q is increased for fixed fixed
frustration. This is seen in Fig. 5, where it is indeed
seen that chaos disappears as the antiferromagnetic de-
generacy of the Potts model is increased by increasing
q.
The complete frustration versus multiplicity phase di-

agram has been calculated and is given in Fig. 6, clearly
showing reentrance. Note the stability of the chaotic
phase around q = 3.

The ousting of frustrated chaos by the multiplicity of
local states could have a relevance to the mathematical
Ising-type modeling of societal collective behavior.[23]
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FIG. 6. The frustration-multiplicity chaos phase diagram of
the system, shows the qpb combinations for which chaos oc-
curs. NC stands for non-chaos. The vertical scale changes at
pb = 100. Note the reentrance, as a function of frustration,
of non-chaos.
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