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Nematic ordering, where the spins globally align along a spontaneously chosen axis irrespective
of direction, occurs in spin-glass systems of classical Heisenberg spins in d = 3. In this system
where the nearest-neighbor interactions are quenched randomly ferromagnetic or antiferromagnetic,
instead of the locally randomly ordered spin-glass phase, the system orders globally as a nematic
phase. The system is solved exactly on a hierarchical lattice and, equivalently, Migdal-Kadanoff
approximately on a cubic lattice. The global phase diagram is calculated, exhibiting this nematic
phase, and ferromagnetic, antiferromagnetic, disordered phases. The nematic phase of the classical
Heisenberg spin-glass system is also found in other dimensions d > 2: We calculate nematic transition
temperatures in 24 dimensions in 2 < d ≤ 4.

I. INTRODUCTION: NEMATIC ORDER DUE

TO QUENCHED RANDOMNESS

Spin glasses, broadly defined as systems with frozen
(quenched) disorder that have locally annulling inter-
actions (frustration), present complex systems with a
plethora of distinctive characteristics. These distinctions
include the spin-glass phase and its signature: chaos un-
der repeated scale changes [1–3]. The fractal spectrum of
spin-glass chaos has recently been shown to be used as a
classification and clustering tool for the broadest of com-
plex data, including multigeographic multicultural music
and brain signals.[4] The ordering of the spin-glass phase
has local fixation within spatial non-uniformity, the di-
rection and magnitude of the local magnetization varying
between neighboring points of a lattice, but the direction
of local magnetization being firmly fixed relative to the
local magnetizations of the neighbors.
The above discussion has been in terms of Ising spins,

namely one-component spins, on which the preponder-
ance of spin-glass research has been done. We find here
that for three-component Heisenberg spins, the new or-
dering evades the directional fixation: the spins globally
align along a spontaneously chosen axis irrespective of di-
rection, thus creating a nematic spin phase. Thus, sym-
metry is globally broken by the spontaneous choice of a
spin axis, but all local magnetizations are zero.

II. THE MODEL AND THE GENERAL

METHOD

The classical Heisenberg spin-glass system is defined
by the Hamiltonian

− βH =
∑

〈ij〉

Jij ~si · ~sj , (1)

where β = 1/kBT , Jij = +|J | or −|J | (ferromagnetic or
antiferromagnetic) with probability p and 1 − p respec-
tively, the classical spin ~si is the unit spherical vector

(a)

(b)

FIG. 1. (a) Migdal-Kadanoff approximate renormalization-
group transformation for the d = 3 cubic lattice with the
length-rescaling factor of b = 3. In this intuitive ap-
proximation, bond moving is followed by decimation. (b)
Exact renormalization-group transformation of the d =
3, b = 3 hierarchical lattice for which the Migdal-Kadanoff
renormalization-group recursion relations are exact. The con-
struction of a hierarchical lattice proceeds in the opposite di-
rection of its renormalization-group solution. From [7, 41].

at lattice site i, and the sum is over all nearest-neighbor
pairs of sites.

We solve the classical Heisenberg spin glass by a
renormalization-group transformation that is exact on
the d = 3 hierarchical lattice and, equivalently, Migdal-
Kadanoff approximate [5, 6] on the d = 3 cubic lat-
tice (Fig. 1). The latter much-used approximation is
physically intuitive: In a hypercubic lattice where an ex-
act renormalization-group transformation cannot be ap-
plied, as an approximation some of the bonds are re-
moved, which weakens the connectivity of the system
and, to compensate, for every bond removed, a bond is
added to the remaining bonds. This step is the bond-
moving step and constitutes the approximate step of the
renormalization-group transformation. At this point, the
intermediate sites can be eliminated by an exact integra-
tion over their spin values in the partition function, which
yields the renormalized interaction between the remain-
ing sites. This is called the (exact) decimation step and
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completes the renormalization-group transformation. As
shown in Fig. 1, the renormalization-group recursion re-
lations of the Migdal-Kadanoff approximation are identi-
cal to those of an exact solution of a hierarchical lattice
[7–9]. For recent works using hierarchical lattices, see
[10–22]

FIG. 2. Calculated phase diagram of the classical Heisenberg
spin-glass system in d = 3. The phase diagram shows no spin-
glass phase, but at low temperatures an extended nematic
phase where the spins globally align along a spontaneously
chosen axis irrespective of direction.

This simple renormalization-group transformation has
been widely successful on different systems: the lower-
critical dimension dc below which no ordering occurs has
been correctly determined as dc = 1 for the Ising model
[5, 6], dc = 2 for the XY [23, 24] and Heisenberg [25] mod-
els, and the presence of an algebraically ordered phase
has been seen for the XY model [18, 23, 24]. In q-state
Potts models, the number of states qc for the changeover
from second-order to first-order phase transitions has
been correctly obtained in d = 2 and 3.[26] In systems
with frozen microscopic disorder (quenched randomness),
dc = 2 has been determined for the random-field Ising
[27, 28] and XY models [29], and the non-integer value
of dc = 2.46 for the Ising spin-glass [30–36]. Also un-
der the Migdal-Kadanoff approximation, the chaotic na-
ture of the Ising spin-glass phases [1–3] has been ob-
tained and Lyapunov exponentwise quantitatively ana-
lyzed, both for quenched randomly mixed ferromagnetic-
antiferromagnetic spin glasses [37–39] and right- and left-
chiral (helical) spin glasses [40–42].

III. MIGDAL-KADANOFF

RENORMALIZATION GROUP FOR THE

HEISENBERG MODEL WITH NON-UNIFORM

INTERACTIONS

The algebra of the Migdal-Kadanoff transformation for
discrete spin systems such as Ising, Potts, and clock mod-
els is quite simple. The transformation for the three-
component classical Heisenberg model, with each spin
having two continuously varying sterangles, has only

been recently achieved [25], for systems without ran-
domness, and is not simple. Here we generalize this
renormalization-group transformation to quenched ran-
dom systems.

FIG. 3. Low-temperature portion of the calculated phase di-
agram of the classical Heisenberg spin-glass system in d = 3.
As more fully seen here, the phase diagram shows no spin-
glass phase, but at low temperatures an extended nematic
phase where the spins globally align along a spontaneously
chosen axis irrespective of direction.

In the first, bond-moving, step (Fig.1) of the Migdal-
Kadanoff transformation,

ũi′j′ (γ) = ui1j1(γ)ui2j2(γ), (2)

where uij(γ) = e−βHij(~si,~sj) is the exponentiated nearest-
neighbor Hamiltonian between sites (i, j) and γ is the
angle between the spherical unit vectors (~si, ~sj). The
tilda denotes bond-moved. Using the Fourier-Legendre
series,

un(γ) =

∞
∑

l=0

λ
(n)
l Pl(cos(γ)), (3)

where n denotes injn, with the expansion coefficient λ
(n)
l

evaluated as

λ
(n)
l =

2l + 1

2

∫ 1

−1

un(γ)Pl(cos(γ)) d(cos(γ)). (4)

Thus, for the left side of Eq.(2),

λ̃
(n′)
l =

2l + 1

2

∫ 1

−1

un1
(γ)un2

(γ)Pl(cos γ) d(cos γ) =

2l+ 1

2

∞
∑

l1=0

∞
∑

l2=0

λ
(n1)
l1

λ
(n2)
l2

·

∫ 1

−1

Pl1(cos γ)Pl2(cos γ)Pl(cos γ) d(cos γ)

=

∞
∑

l1=0

∞
∑

l2=0

λ
(n1)
l1

λ
(n2)
l2

〈l1l200|l1l2l0〉
2
, (5)
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where the bracket notation is the Clebsch-Gordan co-
efficient with the restrictions l1 + l2 + l = 2s, s ∈ N;
|l1 − l2| ≤ l ≤ |l1 + l2|.
In the second, decimation, step of the Migdal-Kadanoff

transformation, a decimated bond is obtained by inte-
grating over the shared spin of two bonds,

u′
13(γ13) =

∫

ũ12(γ12)ũ23(γ23)
d~s2
4π

=

=

∞
∑

l1=0

∞
∑

l2=0

∫

λ̃
(n1)
l1

λ̃
(n2)
l2

Pl1(cos γ12)Pl2(cos γ23)
d~s2
4π

.

(6)

The prime denotes renormalized. Expressing the Legen-
dre polynomials in terms of spherical harmonics,

=

∞
∑

l1=0

∞
∑

l2=0

l1
∑

m1=−l1

l2
∑

m2=−l2

λ̃
(n1)
l1

λ̃
(n2)
l2

(4π)2

(2l1 + 1)(2l2 + 1)
·

∫

Y m1

l1
(~s1)Y

m1∗
l1

(~s2)Y
m2

l2
(~s2)Y

m2∗
l2

(~s3)
d~s2
4π

, (7)

evaluating the integral and summing over the resulting
delta functions,

=

∞
∑

l1=0

l1
∑

m1=−l1

λ̃
(n1)
l1

λ̃
(n2)
l1

4π

(2l1 + 1)2
Y m1

l1
(~s1)Y

m1∗
l1

(~s3),

(8)

due to occcuring Dirac delta functions. Rearranging the
spherical harmonics back to Legendre polynomials and
combining with Eq.(5),

λ
(n′)
l =

1

(2l+ 1)

(

∞
∑

l1=0

∞
∑

l2=0

λ
(n1)
l1

λ
(n2)
l2

〈l1l200|l1l2l0〉
2)

·

(

∞
∑

l3=0

∞
∑

l4=0

λ
(n3)
l3

λ
(n4)
l4

〈l3l400|l3l4l0〉
2)
, (9)

the full recursion relations of the renormalization-group
are obtained. The bond-moved λ̃ were substituted
from Eq.(5). Thus, the renormalization-group transfor-
mation is in terms of the Fourier-Legendre coefficients

λ
(n′)
l ({λ

(ni)
l }). We have kept up to l = 25 in our numer-

ical calculations of the trajectories.

IV. MIGDAL-KADANOFF

RENORMALIZATION GROUP FOR THE

HEISENBERG MODEL WITH QUENCHED

RANDOMNESS

Having derived the renormalization-group transforma-
tion for non-uniform nearby interactions, we can now
proceed with the solution of the quenched random prob-
lem of the spin-glass Heisenberg system in d dimensions,

FIG. 4. The fixed-point exponentiated potential u(γ) at the
renormalization-group sink of the nematic phase. The neigh-
boring spins align (nearest-neighbor angle γ = 0) or anti-align
(γ = π), creating the nematic phase with a global sponta-
neous alignment axis along which both spin directions oc-
cur. All points in the nematic phase flow, under repeated
renormalization-group transformations, to this sink which
epitomizes the ordering of this phase. This potential func-
tion, in terms of the nearest-neighbor angle γ, is reconstructed
from the Fourier-Legendre coefficients at the renormalization-
group sink.

exactly on hierarchical lattices and Migdal-Kadanoff ap-
proximately on hypercubic lattices. We start with 30,000
local ferromagnetic and antiferromagnetic interactions as
dictated by the antiferromagnetic probability p given
after Eq.(1). We randomly select from this group to
generate 30,000 new interactions. Remembering that
for each interaction, 25 Fourier-Legendre coefficients are
kept, this is a gigantific calculation. In order to con-
serve the ferromagnetic-antiferromagnetic symmetry of
the system, the length rescaling factor of b = 3 is chosen.
In the bond-moving step, bd−1 interactions are moved
onto one interaction. In the decimation step, b interac-
tions in series are decimated into one.
The renormalization-group trajectories (of sets of

30,000 interactions) are effected by repeated applications
of the above transformation. The initial points of these
trajectories are obtained from the Hamiltonian in Eq.(1),
which can be written as

− βH =
∑

<ij>

Jij~si · ~sj =
∑

<ij>

Jijcos γij . (10)

Using the plane-wave expansion for the term in the par-
tition function involving the two spins,

eJ cos γ =

∞
∑

l=0

(2l + 1)iljl(−iJ)Pl(cos γ) =

∞
∑

l=0

λlPl(cos γ),

(11)
where jl(−iJ) is a spherical Bessel function and Pl(cos γ)
is a Legendre polynomial.
With no approximation, after every decimation and af-

ter setting up the initial conditions, the coefficients {λl}
are divided by the largest λl. This is equivalent to sub-
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tracting a constant term from the Hamiltonian and pre-
vents numerical overflow problems in flows inside the or-
dered phases.

V. NEMATIC PHASE: GLOBAL ALIGNMENT

SPONTANEOUSLY GENERATED FROM

SPIN-GLASS DISORDER

Under repeated applications of the renormalization-
group transformation of Eq.(9), the Fourier-Legendre co-
efficients flow to a stable fixed point, which is the sink of a
thermodynamic phase. The sinks of the disordered phase
and the ferromagnetic phase have been discussed and an-
alyzed elsewhere [25]. The sink of the antiferromagnetic
phase is identical to the sink of the ferromagnetic phase,
except that the sharp central peak is at nearest-neighbor
angle γ = φ.

FIG. 5. The fixed-point exponentiated potential u(γ) of the
sink of the nematic phase of the d = 3 classical Heisenberg
spin-glass system. This potential function, in terms of the
spherical coordinate angles θ and φ of one spin with respect
to the other, is reconstructed from the Fourier-Legendre co-
efficients at the sink.

For d = 3 for the classical Heisenberg spin system,
a new phase occurs in the low-temperature quenched-
disorder region of the phase diagram, as seen in Figs. 2
and 3, where the spin-glass phase is for the Ising system.
The sink of this phase is shown in Figs. 4 and 5. Fig.
4 shows, at the sink, the exponentiated nearest-neighbor
Hamiltonian uij(γ) = e−βHij(~si,~sj) between sites (i, j)
versus the angle γ between the spherical unit vectors
(~si, ~sj). Fig. 5 shows, at the sink, the exponentiated
nearest-neighbor Hamiltonian uij(γ) versus the angles θ
and φ between (~si, ~sj). It is thus seen that the neigh-
boring spins align (nearest-neighbor angle γ = 0) or

anti-align (γ = π), globally creating the nematic phase,
where a spontaneous alignment axis along which both
spin directions occur. All points in the nematic phase
flow, under repeated renormalization-group transforma-
tions, to this sink which epitomizes the global ordering
of this phase.

It is seen that, in the Heisenberg spin-glass system, at
low temperature, this nematic phase extends wider, from
p = 0.12 to 0.88, as compared with the identically placed
spin-glass phase of the Ising spin-glass system. A simi-
lar widening, from p = 0.24 to 0.76 to essentially p = 0
to 1 is seen [43] in the Ising spin-glass phase, when ther-
mal vacancies are included, making domain flipping more
favorable, thus eating into the ferromagnetic (and anti-
ferromagnetic) phases without loosing order. A similar
mechanism may be in effect in the present case, with the
continuously varying directions of the Heisenberg spins
making domain flipping more favorable.

The nematic phase of the classical Heisen-
berg spin-glass system is also calculated in
d = 2.26, 2.46, 2.63, 2.77, 2.89 dimensions and in di-
mensions d ≥ 3. Our calculated transition temperatures,
for 24 dimensions in 2 < d ≤ 4, are shown in Fig. 6. No
nematic (or ferromagnetic [25]) phase occurs in d = 2,
which is expected.

FIG. 6. Calculated transition temperatures for the nematic
phase (at p = 0.5), squares and right vertical scale, and for the
ferromagnetic phase (at p = 1), circles and left vertical scale,
for 24 dimensions in 2 < d ≤ 4. No nematic (or ferromagnetic
[25]) phase occurs in d = 2, which is expected.

VI. CONCLUSION

We have solved the classical Heisenberg spin-glass sys-
tem by renormalization-group theory. In d > 2, in
this system with quenched local randomness, a low-
temperature phase with global order, in the form of a
spontaneously chosen spin easy-axis, irrespective of spin
direction. Thus, a nematic phase occurs in the Heisen-
berg spin system with competing ferromagnetic and an-
tiferromagnetic interactions.
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[23] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nel-
son, Renormalization, vortices, and symmetry-breaking
perturbations in two-dimensional planar model, Phys.
Rev. B 16, 1217 (1977).

[24] A. N. Berker and D. R. Nelson, Superfluidity and phase
separation in helium films, Phys. Rev. B 19, 2488 (1979).

[25] E. Tunca and A. N. Berker, Renormalization-group
theory of the Heisenberg model in d dimensions,
arXiv:2202.06049 [cond-mat.stat-mech] (2022).

[26] H. Y. Devre and A. N. Berker, First-order to second-order
phase transition changeover and latent heats of q-state
Potts models in d=2,3 from a simple Migdal-Kadanoff
adaptation, Phys. Rev. E 105, 054124 (2022).

[27] M. S. Cao and J. Machta, Migdal-Kadanoff study of the
random-field Ising model, Phys. Rev. B 48, 3177 (1993).

[28] A. Falicov, A. N. Berker, and S. R. McKay,
Renormalization-group theory of the random-field Ising
model in 3 dimensions, Phys. Rev. B 51, 8266 (1995).

[29] K. Akın and A. N. Berker, Lower-critical dimension of the
random-field XY model and the zero-temperature critical
line, arXiv:2203.11153 [cond-mat.stat-mech] (2022).

[30] S. Franz, G. Parisi, and M.A. Virasoro, Interfaces
and lower critical dimension in a spin-glass Model, J.
Physique I 4, 1657 (1994).

[31] C. Amoruso, E. Marinari, O. C. Martin, and A. Pagnani,
Scalings of domain wall energies in two dimensional Ising
spin glasses, Phys. Rev. Lett. 91, 087201 (2003).

[32] J.-P. Bouchaud, F. Krzakala, and O. C. Martin, Energy
exponents and corrections to scaling in Ising spin glasses,
Phys. Rev. B 68, 224404 (2003).

[33] S. Boettcher, Stiffness of the Edwards-Anderson model
in all dimensions, Phys. Rev. Lett. 95, 197205 (2005).

http://arxiv.org/abs/2201.10261
http://arxiv.org/abs/2202.06049
http://arxiv.org/abs/2203.11153


6
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