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The left-right chiral and ferromagnetic-antiferromagnetic double spin-glass clock model, with
the crucially even number of states q = 4 and in three dimensions d = 3, has been studied by
renormalization-group theory. We find, for the first time to our knowledge, four different spin-glass
phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions
between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions
of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and
with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that
the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also
otherwise very rich, including regular and temperature-inverted devil’s staircases and reentrances.

PACS numbers: 75.10.Nr, 05.10.Cc, 64.60.De, 75.50.Lk

I. INTRODUCTION

Spin-glass phases, created by competing frustrated
random ferromagnetic and antiferromagnetic interac-
tions, have been known [1] to incorporate a plethora
of interesting complex phenomena, not the least being
the natural generation chaos [2–4]. Recently, it has been
shown [5, 6] that competing left- and right-chiral inter-
actions also create spin-glass phases, even in the absence
of competing ferromagnetic and antiferromagnetic inter-
actions. First shown [5] with chiral Potts models [7–11]
with the inclusion of quenched randomness, chiral spin
glasses were recently extended [6] to clock models with
an odd number of states (q = 5), resulting in a literally
moviesque sequence of phase diagrams, including regular
and inverted devil’s staircases, a chiral spin-glass phase,
and algebraic order.

The chiral clock model work was purposefully initiated
[6] with odd number of states q, in order to deal with the
complexity of the global phase diagram, since it is known
that the odd q models do not show [12] the traditional
ferromagnetic-antiferromagnetic spin-glass phase. The
current study, on the other hand, is on the random chiral
clock model with an even number of states (q = 4), which
supports the ferromagnetic-antiferromagnetic usual spin-
glass phase [12], as well as, as we shall see below, the
chiral spin-glass phase and two other new spin-glass
phases. A double spin-glass model is constructed, in-
cluding competing quenched random left-right chiral and
ferromagnetic-antiferromagnetic interactions, and solved
in three dimensions by renormalization-group theory.

The extremely rich phase diagram includes, to our
knowledge for the first time, more than one (four) spin-
glass phases on the same phase diagram and three sep-
arate spin-glass-to-spin-glass phase transitions. These
constitute phase transitions between chaoses. We deter-
mine the chaotic behaviors of the spin-glass phases, of
the phase transitions between the spin-glass phases, of

the phase transitions between the spin-glass phases and
the ferromagnetic, antiferromagnetic, quadrupolar, and
disordered phases.

II. DOUBLY SPIN GLASS SYSTEM:

LEFT-RIGHT CHIRAL AND

FERRO-ANTIFERRO INTERACTIONS

The q−state clock spin glass is composed of unit
spins that are confined to a plane and that can only point
along q angularly equidistant directions, with Hamilto-
nian

− βH =
∑

〈ij〉

Jij~si.~sj =
∑

〈ij〉

Jij cos θij , (1)

where β = 1/kBT , θij = θi − θj , at each site i
the spin angle θi takes on the values (2π/q)σi with
σi = 0, 1, 2, . . . , (q − 1), and 〈ij〉 denotes summation
over all nearest-neighbor pairs of sites. As the long-
studied ferromagnetic-antiferromagnetic spin-glass sys-
tem [1], the bond strengths Jij , with quenched (frozen)
ferromagnetic-antiferromagnetic randomness, are +J >
0 (ferromagnetic) with probability 1−p and −J (antifer-
romagnetic) with probability p, with 0 ≤ p ≤ 1. Thus,
the ferromagnetic and antiferromagnetic interactions lo-
cally compete in frustration centers. Recent studies on
ferromagnetic-antiferromagnetic clock spin glasses are in
Refs. [12–14].
Doubling the spin-glass effect, in the q−state chiral

clock double spin glass recently introduced (and used
in the qualitatively different odd q = 5), frustration also
occurs via randomly frozen left or right chirality [5]. The
Hamiltonian in Eq. (1) is generalized to random local
chirality,

− βH =
∑

〈ij〉

[Jij cos θij +∆ δ(θij + ηij
2π

q
)]. (2)
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In a cubic lattice, the x, y, or z coordinates increase as
sites along the respective coordinate direction are consid-
ered. Bond moving as in Fig. 1(a) is done transversely to
the bond directions, so that this sequencing is respected.
Equivalently, in the corresponding hierarchical lattice,
one can always define a direction along the connectiv-
ity, for example from left to right in Fig. 1(b), and as-
sign consecutive increasing number labels to the sites. In
Eq. (2), for each pair of nearest-neighbor sites 〈ij〉 the
numerical site label j is ahead of i, frozen (quenched)
ηij = 1 (left chirality) or −1 (right chirality), and the
delta function δ(x) = 1 (0) for x = 0 (x 6= 0). The overall
concentrations of left and right chirality are respectively
1− c and c, with 0 ≤ c ≤ 1. The strength of the random
chiral interaction is ∆/J , with temperature divided out.
With no loss of generality, we take ∆ ≥ 0. Thus, the
system is chiral for ∆ > 0, chiral-symmetric for c = 0.5,
chiral-symmetry-broken for c 6= 0.5. The global phase di-
agram is in terms of temperature J−1, antiferromagnetic
bond concentration p, random chirality strength ∆/J ,
and chiral symmetry-breaking concentration c.

III. RENORMALIZATION-GROUP METHOD:

MIGDAL-KADANOFF APPROXIMATION AND

EXACT HIERARCHICAL LATTICE SOLUTION

Our method has been previously described [6] and used
on a qualitatively different model, with qualitatively dif-
ferent results. Thus, we solve the chiral clock double spin-
glass model with q = 4 states by renormalization-group
theory, in d = 3 spatial dimensions, with length rescaling
factor b = 3. We use b = 3, as in previous position-space
renormalization-group calculations of spin-glass systems,
because it treats ferromagnetism and antiferromagnetism
on equal footing. Our solution is, simultaneously, the
Migdal-Kadanoff approximation [15, 16] for the cubic lat-
tice and the exact solution [17–21] for the d = 3 hier-
archical lattice based on the repeated self-imbedding of
leftmost graph of Fig. 1(b). Fig. 1(a) shows the Migdal-
Kadanoff approximate renormalization-group transfor-
mation for the cubic lattice, composed of the bond-
moving followed by decimation steps. Fig. 1(b) shows
the exact renormalization-group transformation for the
matching hierarchical lattice. The two procedures yield
identical recursion relations. Exact calculations on hi-
erarchical lattices are also currently widely used on a
variety of statistical mechanics [22–36] and finance [37]
problems.
Under the renormalization-group transformation de-

scribed below, the Hamiltonian of Eq. (2) maps onto
the more general form

− βH =
∑

〈ij〉

Vij(θij), (3)

where θij = θi − θj can take q different values, so that
for each pair < ij > of nearest-neighbor sites, there are

(a)

(b)

FIG. 1. (a) The Migdal-Kadanoff approximate
renormalization-group transformation for the cubic lat-
tice, composed of the bond-moving followed by decimation
steps, with the length rescaling factor b = 3. The corre-
sponding hierarchical lattice is obtained by the repeated
self-imbedding of the leftmost graph in (b). (b) The exact
renormalization-group transformation for this d = 3 hierar-
chical lattice. The two procedures yield identical recursion
relations.

q = 4 different interaction constants

{Vij(θij)} =

{Vij(0), Vij(π/2), Vij(π), Vij(3π/2)} ≡ Vij , (4)

which are in general different at each locality (quenched
randomness). The largest element of {Vij(θij)} at each
locality < ij > is set to zero, by subtracting the same
constantG from all q interaction constants, with no effect
on the physics; thus, the q−1 other interaction constants
are negative.
The local renormalization-group transformation is

achieved by the sequence, shown in Fig. 1, of bond mov-
ings

Ṽij(θij)− G̃ =

bd−1∑

k=1

V
(k)
ij (θij), (5)

and decimations

eV
′

14
(θ14)−G =

∑

θ2,θ3

eṼ12(θ12)+Ṽ23(θ23)+Ṽ34(θ34), (6)

where G̃ and G are the subtractive constants mentioned
above, and prime marks the interaction of the renormal-
ized system.
The starting double-bimodal quenched probability dis-

tribution of the interactions, characterized by p and c as
described above, is not conserved under rescaling. The
renormalized quenched probability distribution of the in-
teractions is obtained by the convolution [38]

P ′(V′
i′j′) =

∫ 




i′j′∏

ij

dVijP (Vij)




 δ(V′
i′j′ −R({Vij})),

(7)
where Vij ≡ {Vij(θij)} as in Eq. (4), R({Vij}) repre-
sents the bond moving and bond decimation given in Eqs.
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FIG. 2. (Color online) A calculated sequence of phase diagrams for the left chiral (c = 0), on the upper side, and quenched
random left and right chiral (c = 0.5), on the lower side, systems with, in both cases, quenched random ferromagnetic and anti-
ferromagnetic interactions. The horizontal axis is the random chirality strength ∆/J . The consecutive phase diagrams are for
different concentrations p of antiferromagnetic interactions. The system exhibits a ferromagnetic phase F, an antiferromagnetic
phase A, a multitude of different chiral phases, a quadrupolar phases Q, a ”one-step” phase R, and four differently ordered
spin-glass phases: the chiral spin-glass SCH , the usual ferromagnetic-antiferromagnetic spin glass SFA, the quadrupolar spin
glass SQ, and SR. The phase diagrams obtained from p and 1− p are symmetric, since the system has an even number of spin
directions. On some of the chiral phases, the π/2 multiplicity of the asymptotically dominant interaction is indicated. The
ferromagnetic and chiral phases accumulate as different devil’s staircases at their boundary with the disordered (D) phase.

(5) and (6), and primes refer to the renormalized system.
Similar previous studies, on other spin-glass systems, are
in Refs. [12, 13, 39–46]. For numerical practicality the
bond moving and decimation of Eqs. (5) and (6) are
achieved by a sequential pairwise combination of interac-
tions, each pairwise combination leading to an interme-
diate probability distribution resulting from a pairwise
convolution as in Eq. (7).

We effect this procedure numerically, first starting with
the initial double delta distribution of Eq. (2) giving
4 possible interactions quenched randomly distributed
throughout the system, and generating 1000 interactions
that embody the quenched probability distribution re-
sulting from the pairwise combination. Each of the gen-
erated 1000 interactions is described by q = 4 interaction
constants, as explained above [Eq. (4)]. At each subse-
quent pairwise convolution as in Eq. (7), 1000 randomly
chosen pairs, representing quenched random neighbors in

the lattice, are matched by (5) or (6), and a new set of
1000 interactions is produced.

Our calculation simply consists in following the re-
cursion relations, Eqs.(5-7) to the various fixed points
and thereby mapping the initial conditions that are the
basins of attraction of the various fixed points. This
map is the phase diagram: The different thermodynamic
phases of the system are identified by the different asymp-
totic renormalization-group flows of the quenched prob-
ability distribution P (Vij). Two renormalization-group
trajectories starting at each side of a phase boundary
point diverge from each other, flowing towards the phase
sinks (completely stable fixed points) of their respective
phases. Thus, the phase boundary point between two
phases is readily obtained to the accuracy of the figures.
We are therefore able to calculate the global phase dia-
gram of the (importantly even) q = 4 chiral clock double
spin-glass model.
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FIG. 3. (Color online) Asymptotic fixed distribution of the
chiral spin-glass phase SCh. The part of the fixed distribution
P1(Vij), for the interactions Vij in which Vij(π/2) is maxi-
mum and therefore 0 (and the other three interactions are neg-
ative) is shown in this figure, with vij(θ) = Vij(θ)/ 〈|Vij(θ)|〉.
The projections of P1(Vij) onto two of its three arguments are
shown in each panel of this figure. The other three Pσ(Vij)
have the same fixed distribution. Thus chirality is broken
locally but not globally, just as, in the long-time studied
ferromagnetic-antiferromagnetic spin glasses, spin-direction
symmetry breaking is local but not global (i.e., the local mag-
netization is non-zero, the global magnetization is zero).
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FIG. 4. Asymptotic fixed distributions of 3 different spin-
glass phases, with vij(θ) = Vij(θ)/ 〈|Vij(θ)|〉. For the
ferromagnetic-antiferromagnetic spin-glass SFA phase, r =
0, σ = 2 and r = 2, σ = 0. The other two angles do not occur.
For the quadrupolar spin-glass SQ phase, r = 0, σ = 1 and
r = 1, σ = 0, with Vij(0) = Vij(π) and Vij(π/2) = Vij(3π/2).
For the spin-glass SR phase, r = 1, σ = 3 and r = 3, σ = 1.
The other two angles do not occur. The vij(0) = vij(π) curve
obtained from the left panel of Fig. 3 also matches the curve
here.

IV. GLOBAL PHASE DIAGRAM:

MULTIPLE SPIN-GLASS PHASES

The global phase diagram of the q = 4 state chiral
clock double spin-glass model in d = 3 spatial dimen-
sions, in temperature J−1, antiferromagnetic bond con-
centration p, random chirality strength ∆/J , and right-
chirality concentration c, is a four-dimensional object, so

that only the cross-sections of the global phase diagram
are exhibited.

Figs. 2 show a calculated sequence of phase diagram
cross sections for the left-chiral (c = 0), on the upper side,
and quenched random left- and right-chiral (c = 0.5), on
the lower side, systems with in both cases quenched ran-
dom ferromagnetic and antiferromagnetic interactions.
The horizontal axis is the random chirality strength ∆/J
(See Eq.(2)). The consecutive phase diagrams are for dif-
ferent concentrations p of antiferromagnetic interactions.
The system exhibits a disordered phase (D), a ferromag-
netic phase (F), a conventionally ordered (in contrast to
the algebraically ordered for q = 5) antiferromagnetic
phase (A), a quadrupolar phase (Q), a new ”one-step”
phase (R), a multitude of different chiral phases, and four
different spin-glass phases (SCh, SFA, SQ, SR) including
spin-glass-to-spin-glass phase transitions. The ferromag-
netic and different chiral phases accumulate as conven-
tional and temperature-inverted (abutting to the reen-
trant [47–51] disordered phase) devil’s staircases [52, 53]
at their boundary with the disordered (D) phase. This
accumulation occurs at all scales of phase diagram space
(i.e., at all magnifications of the phase diagram figure).

Unlike the odd q case of q = 5, which incorporates
built-in entropy [6] even without any quenched random-
ness, no algebraically ordered phase [54, 55] occurs in
this even q case of q = 4. The devil’s staircases of the
chiral phases is again seen. Most interestingly, quadrupo-
lar and ”one-step” phases, different spin-glass phases for
the first time in the same phase diagram, and spin-
glass-to-spin-glass direct phase transitions are seen. The
phases and phase boundaries involving spin glassiness are
tracked through the calculated Lyapunov exponents of
their chaos.

In all ordered phases, the renormalization-group tra-
jectories flow to strong (infinite) coupling. In the fer-
romagnetic phase, under renormalization-group trans-
formations, the interaction Vij(0) becomes asymptoti-
cally dominant. In the antiferromagnetic phase, un-
der renormalization-group transformations, the interac-
tion Vij(π) becomes asymptotically dominant. In the
quadrupolar phase Q, the interactions Vij(0) and Vij(π)
become asymptotically dominant and equal. Thus, there
are two such quadrupolar phases, namely along the spin
directions ±x and ±y, with the additional (factorized)
trivial degeneracy of ± spin direction at each site. In the
new ”one-step phase” R, the interactions Vij(+π/2) and
Vij(−π/2) become asymptotically dominant and equal.
Thus, in such a phase, the average local spins can span
all spin directions, taking ±π/2 steps from one spin to
the next in the renormalized systems.

In the chiral phases, in the renormalization-group tra-
jectories, one of the chiral interactions from the right-
hand side of Eq. (4), {Vij(π/2), Vij(3π/2))}, becomes
asymptotically dominant. However, in each of the sep-
arate chiral phases, it takes a characteristic number
n of renormalization-group transformations, namely a
length scale of 3n, to reach the dominance of one chi-
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FIG. 5. Chaotic renormalization-group trajectories of the four different spin-glass phases (black), of the phase boundaries of
the spin-glass phases with other spin-glass phases (red), with non-spin-glass ordered (blue) and disordered (green) phases. The
phase boundary chaoses of each spin-glass phase are given in their corresponding vertically aligned panels. In each case, only
one of the four interactions Vij(0), Vij(π/2), Vij(π), Vij(3π/2) at a given location 〈ij〉, under consecutive renormalization-group
transformations, is shown, except, for illustration, all four interactions are shown for the chaos at the phase transition between
the chiral spin-glass and disordered phases. The θij angular value of each interaction Vij(θij) is indicated in the figure panels,
as well as the Lyapunov exponent λ calculated from the chaotic sequence under renormalization-group transformations. The
Lyapunov exponent is calculated over 1,000 renormalization-group iterations, after throwing out the first 200 iterations. Inside
all four spin-glass phases, the average interaction diverges as < |V | >∼ byRn, where n is the number of renormalization-group
iterations and yR = 0.25 is the runaway exponent. At the SCh−SR, SCh−SQ, SFA−A, SFA−F phase boundaries, yR = 0.25
also. At the SCh−SFA phase boundary, yR = 0.11 for Vij(0), Vij(π) and yR = 0.25 for Vij(π/2), Vij(3π/2). At the phase
boundaries of the spin-glass phases with some non-spin-glass-ordered and disordered phases, the average interaction remains
non-divergent, fixed at < V >= −0.34 for SFA−Q, SR−R, SQ−D and < V >= −1.07 for SCh−D. As indicated by the Lyapunov
exponents, chaos is stronger inside the chiral spin-glass phase.

ral interaction. This distinct number of iterations,
namely scale changes, determines, by tracing back to
the periodic sequence in the original lattice, the pitch
of the chiral phase in the original unrenormalized sys-
tem. Thus, the chiral phases in the original unrenor-
malized system, with distinct chiral pitches, are distinct
phases. After the dominance of one chiral interaction, the
renormalization-group trajectory follows the periodic se-
quence Vij(π/2) → Vij(3π/2) → Vij(π/2) resulting from
matching q = 4 and b = 3.
The renormalization-group trajectories starting in the

spin-glass phases, unlike those in the ferromagnetic,
antiferromagneric, quadrupolar, ”one-step”, and chiral
phases, do not have the asymptotic behavior where at

any scale one potential V (θ) is dominant. These tra-
jectories of the spin-glass phases asymptotically go to
a strong-coupling fixed probability distribution P (Vij)
which assigns non-zero probabilities to a distribution of
Vij values, with no single Vij(θ) being dominant. These
distributions are shown in Figs. 3 and 4. Different
asymptotic fixed probability distributions indicate differ-
ent spin-glass phases.
Since, at each locality, the largest interaction in

{Vij(0), Vij(π/2), Vij(π), Vij(3π/2)} is set to zero and the
three other interactions are thus made negative, by sub-
tracting the same constant from all four interactions
without affecting the physics, the quenched probability
distribution P (Vij), a function of four variables, is ac-
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tually composed of four functions Pσ(Vij) of three vari-
ables, each such function corresponding to one of the in-
teractions being zero and the other three, arguments of
the function, being negative. Figs. 3 and 4 show the
latter functions.

In Fig. 3 for the spin-glass phase SCh, the part of
the fixed distribution, P1(Vij), for the interactions Vij

in which Vij(π/2) is maximum and therefore 0 (and the
other three interactions are negative) is shown. The
projections of P1(Vij) onto two of its three arguments
are shown in each panel of Fig. 3. The other three
Pσ(Vij) have the same fixed distribution. Thus, chi-
rality is broken locally, but not globally, just as, in the
long-time studied ferromagnetic-antiferromagnetic spin
glasses, spin-direction symmetry breaking is local but
not global (i.e., the local magnetization is non-zero, the
global magnetization is zero). The asymptotic fixed dis-
tribution of the phase SCh, given in Fig. 3, assigns non-
zero probabilities to a continuum of values for all four
interactions {Vij(0), Vij(π/2), Vij(π), Vij(3π/2)}. The
phase SCh is therefore a chiral spin-glass phase. The sim-
ilar chiral spin-glass phase has been seen previously, as
the sole spin-glass phase, for the odd q = 5.[6]. The chiral
spin-glass phase occurs even when there is no competing
ferromagnetic-antiferromagnetic interactions.[5, 6]

As seen in Fig. 4, in the asymptotic fixed distribu-
tion of the spin-glass phase SFA, non-zero probabilities
are assigned to a continuum of values of {Vij(0), Vij(π)}.
Fig. 4 shows the fixed distribution values P0(Vij(π)) for
Vij(0) maximum and therefore set to zero. Completing
the asymptotic fixed distribution of SFA is an identical
function P2(Vij(0)) for Vij(π) maximum and therefore set
to zero. At this fixed distribution, the values of Vij(π/2)
and Vij(3π/2) diverge to negative infinity, so that these
angles do not occur. Thus, SFA is the long-studied [1]
spin-glass phase of competing ferromagnetic and antifer-
romagnetic interactions.

Fig. 4 also shows the asymptotic fixed distribution of
the spin-glass phase SR, with the functions P1(Vij(3π/2))
for Vij(π/2) maximum (and therefore set to zero) and
P3(Vij(π/2)) for Vij(3π/2) maximum (and therefore set
to zero). Again, the other two angles do not occur at
this asymptotic fixed distribution. Furthermore, Fig.
4 also shows the asymptotic fixed distribution of the
spin-glass phase SQ, with the functions P0(Vij(π/2))
and P1(Vij(0)), with Vij(0) = Vij(π) and Vij(π/2) =
Vij(3π/2). Thus, this fixed distribution does not lo-
cally distinguish between ± spin directions and is thus
a quadrupolar spin-glass phase.

In fact, the vij(0) = vij(p) curve obtained from the left
panel of Fig. 3 also matches the curve here. The three
fixed distributions given in Fig. 4 exhibit the same nu-
merical curve, but refer to widely different interactions.
Thus, they underpin different spin-glass phases.

V. PHASE TRANSITIONS BETWEEN CHAOS

Another distinctive mechanism, that of chaos under
scale change [2–4] or, equivalently [13], chaos under
spatial translation, occurs within the spin-glass phase
and differently at the spin-glass phase boundary [13],
in systems with competing ferromagnetic and antifer-
romagnetic interactions [2–4, 13, 45, 56–82] and, more
recently, with competing left- and right-chiral interac-
tions [5, 6]. The physical hierarchical lattice that we
solve here is an infinite system, where 1000 quadru-
plets {Vij(0), Vij(π/2), Vij(π), Vij(3π/2)} are randomly
distributed over the lattice bond positions. Thus, we
can fix our attention to one lattice position and moni-
tor how the quadruplet at that position evolves under
renormalization-group transformation, as it merges with
its neighbors through bond moving [Eq. (5)] and dec-
imation [Eq. (6)], and thereby calculate the Lyapunov
exponent [13, 45], which when positive is the measure of
the strength of chaos.
Fig. 5 gives the asymptotic chaotic renormalization-

group trajectories of the four different spin-glass phases
and of the phase boundaries between the spin-glass
phases with other spin-glass phases, with the non-spin-
glass ordered phases and the disordered phase. The
chaotic trajectories found here are similar to those found
in traditional (Ising) spin-glasses [13, 45], with of course
different Lyapunov exponents seen below. The four in-
teractions Vij(0), Vij(π/), Vij(π), Vij(3π/2) at a given lo-
cation < ij >, under consecutive renormalization-group
transformations, are shown in Fig. 5. As noted, chaos is
measured by the Lyapunov exponent [13, 45, 73, 83, 84],
which we have previously [6] generalized, by the matrix
form, to multi-interaction cases:

λ = lim
n→∞

1

n
ln
∣∣∣E
( n−1∏

k=0

dvk+1

dvk

)∣∣∣, (8)

where the function E(M) gives the largest eigenvalue of
its matrix argument M and the vector vk is

vk = {vij(0), vij(π/2), vij(π), vij(3π/2)}, (9)

with vij(θ) = Vij(θ)/ < |Vij(θ)| >, at step k of the
renormalization-group trajectory. The product in Eq.
(8) is to be taken within the asymptotic chaotic band,
which is renormalization-group stable or unstable for the
spin-glass phase or its boundaries, respectively. Thus, we
throw out the first 200 renormalization-group iterations
to eliminate the transient points outside of, but leading
to the chaotic band. Subsequently, typically using 1,000
renormalization-group iterations in the product in Eq.
(8) assures the convergence of the Lyapunov exponent
value λ.
Spin-glass chaos occurs for λ > 0 [73] and the more

positive λ, the stronger is chaos, as seen for example
in the progressions in Figs. 6 and 7 of Ref. [45]. In-
side all four spin-glass phases, the average interaction
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diverges as < |V | >∼ byRn, where n is the number of
renormalization-group iterations and yR = 0.25 is the
runaway exponent. In the non-spin-glass ordered phases,
the runaway exponent value is yR = d− 1 = 3 [85].
At the SCh−SR, SCh−SQ, SFA − F and its symmet-

ric SFA−A phase boundaries, yR = 0.25 also. At the
SCh−SFA phase boundary, yR = 0.11 for Vij(0), Vij(π)
and yR = 0.25 for Vij(π/2), Vij(3π/2). At the phase
boundaries of the spin-glass phases with some non-spin-
glass ordered and disordered phases, the average inter-
action remains non-divergent, fixed at < V >= −0.34
for SFA−Q, SR−R, SQ−D and < V >= −1.07 for
SCh−D. As indicated by the Lyapunov exponents, chaos
is stronger inside the spin-glass phase than at its phase
boundaries with non-spin-glass phases.
As expected from the asymptotic fixed distribution

analysis given above, the three spin-glass phases SFA,
SQ, SR and the phase transitions between these phases
have the same Lyapunov exponent λ = 1.92 and therefore
the same degree of chaos. The chiral spin-glass SCh has
more chaos (λ = 1.98) from the other three spin-glass
phases. The phase transition between the chiral spin-
glass phase SCh and the other three spin-glass phases is
a phase transition between different types of chaos. This
phase transition itself of course exhibits chaos, as do all
spin-glass phase boundaries.

VI. CONCLUSION

The left-right chiral and ferromagnetic-
antiferromagnetic double spin-glass clock model, with

the crucially even number of states q = 4 and in three
dimensions d = 3, has been solved by renormalization-
group theory that is approximate for the cubic lattice
and exact for the corresponding hierarchical lattice. We
find in the same phase diagram, for the first time to our
knowledge, four different spin-glass phases, including
conventional, chiral, and quadrupolar spin-glass phases,
and phase transitions between spin-glass phases. The
chaoses, in the different spin-glass phases and in the
phase transitions of the spin-glass phases with the other
spin-glass phases, the non-spin-glass ordered phases,
and the disordered phase, are determined and quantified
by Lyapunov exponents. It is seen that the chiral
spin-glass phase is the most chaotic spin-glass phase.
The calculated phase diagram is also otherwise very
rich, including regular and temperatue-inverted devil’s
staircases and reentrances.
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