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The Ising spin-glass model on the three-dimensional (d = 3) hierarchical lattice with long-range
ferromagnetic or spin-glass interactions is studied by the exact renormalization-group solution of
the hierarchical lattice. The chaotic characteristics of the spin-glass phases are extracted in the
form of our calculated, in this case continuously varying, Lyapunov exponents. Ferromagnetic long-
range interactions break the usual symmetry of the spin-glass phase diagram. This phase-diagram
symmetry-breaking is dramatic, as it is underpinned by renormalization-group peninsular flows of
the Potts multicritical type. A Berezinski-Kosterlitz-Thouless (BKT) phase with algebraic order and
a BKT-spinglass phase transition with continuously varying critical exponents are seen. Similarly,
for spin-glass long-range interactions, the Potts mechanism is also seen, by the mutual annihilation
of stable and unstable fixed distributions causing the abrupt change of the phase diagram. On one
side of this abrupt change, two distinct spin-glass phases, with finite (chaotic) and infinite (chaotic)
coupling asymptotic behaviors are seen with a spin-glass-to-spin-glass phase transition.

I. INTRODUCTION: LONG-RANGE

SPIN-GLASSES

Spin-glass systems [1], composed of frozen randomly
distributed competing interactions, such as ferromag-
netic and antiferromagnetic interactions or, more re-
cently [2–4], left- and right-chiral (i.e., helical [5, 6]) in-
teractions, exhibit phases with distinctive spin-glass or-
der. A prime characteristic of the spin-glass phase is the
chaotic behavior [7–17] of the effective temperature under
scale change, which also means the major changes of the
macroscopic properties under minor changes of the exter-
nal paramater such as temperature.[18] In this study, we
consider the spin-glass system of Ising spins on a three-
dimensional (d = 3) hierarchical lattice [19–21], with the
inclusion of long-range interactions [22–24]. We study,
in turn, ferromagnetic and spin-glass long-range interac-
tions. Much qualitatively new behavior emerges from the
inclusion of these long-range interactions. Refs. [25–32]
are recent works using exactly soluble hierarchical mod-
els.
Our model, with nearest-neighbor spin-glass interac-

tions and long-range ferromagnetic or spin-glass interac-
tions, is defined by the Hamiltonian

− βH =
∑

〈ij〉

Jijsisj +
∑

LR

Kijsisj , (1)

where β = 1/kT , si = ±1 at each site i of the lattice,
and the sum 〈ij〉 is over all pairs of nearest-neighbor
sites. The bond Jij is ferromagnetic +J > 0 or antiferro-
magnetic −J with probabilities 1− p and p, respectively.
The long-range interaction LR is between all spins pairs
beyond the first neighbors. We have studied the two
cases where, for all further-neighbor spin pairs, the long-
range interaction is (a) ferromagnetic Kij = K > 0 or
(b) frozen ferromagnetic or antiferromagnetic Kij = ±K
with equal probability, namely a spin-glass interaction.

FIG. 1. Calculated phase diagrams of the Ising spin glass with
long-range ferromagnetic interaction K in d = 3. In the left
panel, the phase diagram that starts leftmost is for K = 0, no
long-range interaction, and is the standart spin-glass phase di-
agram with ferromagnetic-antiferromagnetic symmetry about
the p = 0.5 line. The ferromagnetic and antiferromagnetic
phases are marked respectively as F and A. Between these
phases, there are the spin-glass and disordered phases, respec-
tively at low and high temperature. In the next phase diagram
to the right in the left panel, for long-range ferromagnetic in-
teractionK = 0.01453, the phase diagram is slightly deformed
and loses the ferromagnetic-antiferromagnetic symmetry. For
K > 0, the disordered phase is replaced by a Berezinski-
Kosterlitz-Thouless (BKT) phase with algebraic order. At
K = 0.01453, the BKT phase precipitously disappears, by
the renormalization-group mechanism of the peninsular Potts
flows, explained in the text and in Fig. 3. For K > 0.01453,
there is a direct phase transition between the ferromagnetic
and antiferromagnetic phases, as seen for K = 0.05, the right-
most phase diagram in the left panel of this figure. In the right
panel of this figure, the evolution of this phase diagram is seen
from the phase diagrams for K = 0.05, 0.1, 0.4, 0.8, from top
to bottom.

By symmetry, and a simple reflection (which is meaning-
ful, as the phase diagrams become asymmetric) of the
phase diagrams about the p = 0.5 line, case (a) is equiv-
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alent to antiferromagnetic Kij = −K < 0 interaction for
all further-neighbor spin pairs. As seen in Fig.1, the in-
troduction of long-range interaction qualitatively affects
the system, introducing a new phase (the BKT phase)
and a new mechanism of phase collapse (the peninsular
Potts flow renormalization-group mechanism).

FIG. 2. The hierachical lattice is constructed by the re-
peated self-imbedding of a graph into bond. [19] The dashed
line in the graph represents the long-range interaction. The
renormalization-group exact solution proceeds in the oppo-
site direction: Summation over the spins on the internal sites
(full circles) of the graph gives the renormalized interaction
J ′ between the spins on the external sites (open circles) as a
function of the interactions J and K on the graph, namely
the recursion relation J ′ = J ′({Jij},K), where {Jij} are the
nearest-neighbor interactions, in general with different values,
inside the graph.

II. CONSTRUCTION OF THE HIERARCHICAL

LATTICE AND RENORMALIZATION-GROUP

EXACT SOLUTION

The construction of the hierarchical lattice is explained
in Fig. 2. The number (in this case 27) of nearest-
neighbor interactions replacing a single nearest-neighbor
interaction gives the dimensionality as bd, where b is the
length-rescaling factor, namely the number of bonds in
the shortest path between the external sites of the graph.
In the present case, b = 3 and therefore d = 3.
The renormalization-group transformation is effected

by expressing the nearest-neighbor interaction as a 2× 2
transfer matrix, Tij(si, sj) = eEij(si,sj), where the en-
ergy Eij(si, sj) is initially as given in the first term of
Eq.(1). For each renormalization-group trajectory, ini-
tially 4000 unrenormalized transfer matrices {Tij} are
generated randomly from the double-delta distribution
characterized by the probability p as explained above. In
each consecutive renormalization-group transformation,
a new (renormalized) set of 4000 transfer matrices {T ′

ij}
is generated, using the recursion relation explained in
Fig. 2 and in(A-G) below, randomly choosing each of
the bd unrenormalized transfer matrices Tij inside the
graph from the 4000 transfer matrices generated from the
previous renormalization-group transformation. Thus, a
renormalization-group flow of the quenched probability
distribution of the interactions [33] is obtained.
The generation of a set of renormalized transfer ma-

trices is broken into binary steps [34–36] that accomplish
the dictate of Fig. 2:

(A) First, the starting set of tranfer matrices is com-
bined with itself, by randomly chosing two transfer matri-
ces, T(1) and T

(2), from the set and multiplying matrix

elements at each position, T
(1)
ij ∗ T

(2)
ij , thus obtaining a

new transfer matrix. 4000 such new matrices are gener-
ated.
(B) The set generated in (A) is combined with itself,

using the procedure described in (A).
(C) The set generated in (B) is combined with itself,

using the procedure described in (A).
(D) The set generated in (C) is combined with the

initial set used in (A), using the procedure described in
(A). This completes the combination of bd−1 = 9 parallel
bonds shown in each bubble in Fig. 2.
(E) The set generated in (D) is combined with itself, by

randomly chosing two transfer matrices, T(1) and T
(2),

from the set and matrix multiplying, T(1) ·T(2).
(F) The set generated in (E) is combined with the ini-

tial set used in (E), using the procedure described in (E).
This completes the elimination of the internal sites in Fig.
2 by decimation.
(G) The anti-diagonals of each transfer matrix in the

set are multiplied by exp−2K.
This also completes the renormalization-group trans-

formation, obtaining the set of 4000 renormalized trans-
fer matrices {T′} from the set of 4000 unrenormal-
ized transfer matrices {T}. This renormalization group-
transformation is repeated many times to obtain a
renormalization-group trajectory of the quenched proba-
bility distribution.
With no loss of generality, each time that a transfer

matrix is constructed as described in the previous para-
graphs, the matrix elements are divided by the largest
element, so that eventually all matrix elements are be-
tween 1 and 0, inclusive. This allows the repetition of the
renormalization-group transformation as much as neces-
sary (in practice, thousands of times) without running
into numerical overflow problems, needed for the deter-
mination of thermodynamic phase sinks, runaway expo-
nents, and the Lyapunov exponents of chaos.
For trajectories starting at (J,K, p) in the ferromag-

netic phase, all transfer matrices in the set asymptoti-
cally renormalize to 1 in the diagonals and 0 in the anti-
diagonals. For trajectories starting at (J,K, p) in the
antiferromagnetic phase, all transfer matrices in the set
asymptotically renormalize to 0 in the diagonals and 1 in
the anti-diagonals. For trajectories starting at (J,K, p)
in the spin-glass phase, all transfer matrices in the set
asymptotically renormalize to 1 in the diagonals or anti-
diagonal randomly, simultaneously with 0 in the anti-
diagonals or diagonals. For trajectories starting in the
algebraically ordered BKT phase, all transfer matrices in
the set asymptotically renormalize to 1 in the diagonals
and to a value between 1 and 0 in the anti-diagonals,
continuously varying based on the inital (J,K, p) of the
trajectory. For the trajectories starting in the disordered
phase, all transfer matrices in the set renormalize to 1
in the diagonals and anti-diagonals. Phase boundaries
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in (J,K, p) are obtained by numerically determining the
boundaries of these different asymptotic behaviors.

FIG. 3. The peninsular Potts renormalization-group flow
mechanism and the precipitous phase diagram. In the lower
left panel, the upper line gives the eigenvalue exponents y for
the phase transitions from the antiferromagnetic phase. The
positive part of the lower curve gives the eigenvalue exponents
for the phase transitions between the algebraically ordered
and ferromagnetic phases. The phase diagram on the right is
calculated at constant temperature J−1 = 0.1. Because of the
Potts-peninsular mechanism, explained in the Sec. III, part
of the phase boundary between the ferromagnetic and BKT
phases should be and is calculated to be vertical here.

III. POTTS-PENINSULAR

RENORMALIZATION-GROUP MECHANISM

AND PRECIPITOUS PHASE DIAGRAM

Quenched randomness amplifies in renormalization-
group trajectories starting in the spin-glass phase and
shows chaotic rescaling behavior. Quenched randomness
deamplifies in renormalization-group trajectories start-
ing in the four other phases. In this case, the recursion
relation constructed in the previous section becomes

J ′ = tanh−1{[tanh(9J)]3}+K . (2)

Solving Eq.(2) for J ′ = J ≡ J∗ gives the fixed point
interactions J∗ as a function of K, shown in the upper
right panel of Fig. 3. Taking the derivative of Eq.(2) at
the fixed point,

dJ ′

dJ
=

27[tanh(9J)]2

1 + [tanh(9J)]2 + [tanh(9J)]4
= by , (3)

the eigenvalue exponents y at the fixed point are ob-
tained. These are shown in the lower left panel of Fig.
3.
The peninsular Potts renormalization-group flow

mechanism and the precipitous phase diagram are given
in Fig. 3. The upper left panel shows the lines of fixed

points as a function of the long-range interaction K, cal-
culated from Eq.(2). This calculation is done in the non-
random limit where all renormalization-group trajecto-
ries flow, from phases outside the spin-glass phase. In this
upper left panel, the lower curve is the fixed line, unsta-
ble to the renormalization-group flows, giving the phase
boundary between the antiferromagnetic phase and, for
K < 0.01453 where the upper flows hit the stable branch
of the peninsula, the BKT phase and, for K > 0.01453
where the upper flows miss the peninsula beyond its tip,
the ferromagnetic phase. Therefore, the BKT phase pre-
cipitously disappears for at K = 0.01453. Due to this
catastrophic changeover [37], in Fig. 3, part of the phase
boundary between the ferromagnetic and BKT phases
should be and is calculated to be vertical.
In the lower left panel of Fig. 3, the lower branch of the

peninsula is a fixed line, stable to the renormalization-
group flows, constituting the sink of the algebraically or-
dered BKT phase. The upper branch of the peninsula
is a fixed line, unstable to the flows, giving the phase
transition between the BKT phase and the ferromagnetic
phase. The renormalization-group flows are indicated
with the arrows. The flows at the upper and lower edges
of the panel proceed to J = +∞ and J = −∞, constitut-
ing the sinks of the ferromagnetic and antiferromagnetic
phases respectively. The unstable fixed lines give the
phase transitions. As seen in the lower left panel of Fig.
3, the eigenvalue exponent y and therefore the critical
exponents (e.g., the correlation-length critical exponent
ν) vary continuously along the phase boundaries. This
peninsular renormalization-group flow mechanism previ-
ously has only been seen in Potts models in d dimensions,
realizing the changeover from second- to first-order phase
transitions of the Potts models.[38–43]

IV. ASYMMETRIC PHASE DIAGRAMS WITH

ALGEBRAICALLY ORDERED

BEREZINSKI-KOSTERLITZ-THOULESS PHASE

Calculated phase diagrams of the Ising spin glass with
long-range ferromagnetic interaction K in d = 3 are
shown in Fig. 1. In the left panel, the phase diagram
that starts leftmost is for K = 0, no long-range in-
teraction, and is the standart spin-glass phase diagram
with ferromagnetic-antiferromagnetic symmetry about
the p = 0.5 line. The ferromagnetic and antiferromag-
netic phases are marked respectively as F and A. Be-
tween these phases, there are the spin-glass and disor-
dered phases, respectively at low and high temperature.
In the next phase diagram to the right, for long-range
ferromagnetic interaction K = 0.01453, the phase dia-
gram is slightly deformed and loses the ferromagnetic-
antiferromagnetic symmetry. For K > 0, the disordered
phase is replaced by a Berezinski-Kosterlitz-Thouless
(BKT) phase with algebraic order. This phase has al-
gebraic order, since its sink line continuously varies and
is at non-zero and non-infinite interactions. In general,
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FIG. 4. The chaotic renormalization-group trajectory of the
interaction Jij at a given location < ij >, for various long-
range interactions K. The calculated Lyapunov exponents
λ are also given and increase with ferromagnetic long-range
interaction K. The calculated runaway exponent is yR =
0.24, showing simultaneous strong-chaos and strong-coupling
behaviors.

the correlation length at a fixed point is either zero, or
infinite, due to the scale-free nature of this point. In
the present case, the zero option is eliminated by the
fixed-point interactions being non-zero and non-infinite.
Therefore, the BKT attractive fixed line (phase sink) and
all points flowing to it under renormalization group have
infinite correlation length and algebraic order.[44–48]

At K = 0.01453, the BKT phase precipitously disap-
pears, by the renormalization-group mechanism of the
peninsular Potts flows, explained in Sec. III and in Fig.
3. Thus, our phase diagram calculations (Fig. 1) with
global renormalization-group flows exactly yield and con-
firm the peninsular tip obtained from the fixed-point cal-
culation using Eq. (2) (Fig. 3). ForK > 0.01453, there is
a direct phase transition between the ferromagnetic and
antiferromagnetic phases, as seen forK = 0.05, the right-
most phase diagram in the left panel of Fig. 1. In the
right panel of Fig. 1, the evolution of this phase diagram

is seen from the phase diagrams forK = 0.05, 0.1, 0.4, 0.8,
from top to bottom.

V. CHAOS CONTINUOUSLY VARYING

WITHIN THE SPIN-GLASS PHASE: LYAPUNOV

EXPONENT AND RUNAWAY EXPONENT

The spin-glass phase is a phase induced by competing
quenched randomness and that does not otherwise ex-
ist. The competing interactions can be ferromagnetic
versus antiferromagnetic, as here, or left- and right-
chiral interactions. A distinctive characteristic of the
spin-glass phase is chaos under scale change [7]. In the
present work, the asymptotic chaotic trajectory contin-
uously varies quantitatively with the long-range interac-
tion K.

The asymptotically chaotic renormalization-group tra-
jectories starting within the spin-glass phase are shown
for various values of the long-range interaction K in Fig.
4, where, for each K, the consecutively renormalized
(combining with neighboring interactions) values at a
given location < ij > are followed. The strength of chaos
is measured by the Lyapunov exponent [49, 50]

λ = lim
n→∞

1

n

n−1
∑

k=0

ln
∣

∣

∣

dxk+1

dxk

∣

∣

∣

, (4)

where xk = Jij/J at step k of the renormalization-group

trajectory and J is the average of the absolute value
of the interactions in the quenched random distribu-
tion. We calculate the Lyapunov exponents by discarding
the first 1000 renormalization-group steps (to eliminate
crossover from initial conditions to asymptotic behavior)
and then using the next 9000 steps. For a given K value,
the initial (J, p) values do not matter, as long as they are
within the spin-glass phase. In the absence of long-range
interaction, K = 0, the Lyapunov exponent is calculated
to be λ = 1.93, as in previous work [35, 52]. With increas-
ing long-range ferromagnetic interaction, the Lyapunov
exponent and therefore chaos increase, to the value of
λ = 1.99 for K = 0.8.

In addition to chaos, the renormalization-group trajec-
tories show asymptotic strong coupling behavior,

J ′ = byR J , (5)

where yR > 0 is the runaway exponent [51]. Again using
9000 renormalization-group steps after discarding 1000
steps, we find yR = 0.24 for all values of K. In fact,
yR = 0.24 was also found previously for all values of the
spin s [52].
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FIG. 5. Calculated phase diagrams of the Ising spin glass with
long-range spin-glass interaction ±K in d = 3. From top to
bottom, the phase diagrams are for K = 0.1, 0.4, 0.8. The fer-
romagnetic and antiferromagnetic phases are marked respec-
tively as F and A. Between these phases, for K = 0.1, there
are the weak-coupling and strong-coupling spin-glass phases,
respectively at high and low temperature. The weak-coupling
spin-glass phase occurs for 0 < K < 0.1883 and abruptly dis-
appears at K = 0.1883 by the Potts renormalization-group
flow mechanism generalized to quenched random interactions,
namely by the unstable fixed distribution of the phase bound-
ary between the two spin-glass phases and the stable fixed
distribution sink of the weak-coupling spin-glass phase (Fig.
6) merging and annihilating. Thus, for K > 0.1883, only
the strong-coupling spin-glass phase occurs between the fer-
romagnetic and antiferromagnetic phases.

VI. LONG-RANGE SPIN-GLASS

INTERACTIONS AND

SPIN-GLASS-TO-SPIN-GLASS PHASE

TRANSITIONS

Calculated phase diagrams of the Ising spin glass with
long-range spin-glass interaction ±K in d = 3 are given
in Fig. 5. From top to bottom, the phase diagrams are
for K = 0.1, 0.4, 0.8. The ferromagnetic and antiferro-
magnetic phases are marked respectively as F and A.
Between these phases, for K = 0.1, there are the weak-
coupling and strong-coupling spin-glass phases, respec-
tively at high and low temperature.
Fixed distributions and chaos for these two spin-glasses

with long-range spin-glass interaction ±K in d = 3 are
given in Fig. 6. The left and right columns are for
K = 0.1 and 0.1883 respectively. The top row gives the
stable fixed distribution, i.e., sink, for the weak-coupling
spin-glass phase. The bottom row gives the stable fixed
distribution, i.e., sink, for the strong-coupling spin-glass
phase. The middle row gives the unstable fixed distri-
bution for the phase transition between the weak- and

FIG. 6. Fixed distributions for the Ising spin glass with long-
range spin-glass interaction ±K in d = 3. The left and right
columns are for K = 0.1 and 0.1780 respectively. The top
row gives the stable fixed distribution, i.e., sink, for the weak-
coupling spin-glass phase. The bottom row gives the stable
fixed distribution, i.e., sink, for the strong-coupling spin-glass
phase. The middle row gives the unstable fixed distribu-
tion for the phase transition between the weak- and strong-
coupling spin-glass phases. At the very top are the Lyapunov
exponents for the weak-coupling sinks. At the very bottom
are the Lyapunov exponents for the strong-coupling sinks.

strong-coupling spin-glass phases.

As K is increased, the stable sink fixed distribution for
the weak-coupling spin-glass phase and the unstable fixed
distribution for the phase transition approach each other,
meaning perforce become identical (note the similarity
the two distributions on the right top and bottom of Fig.
6, as compared with the left side), and annihilate each
other, clearing the way for the renormalization-group
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flows to the strong-coupling spin-glass sink. The weak-
coupling spin-glass phase disappears and is replaced by
the extended strong-coupling spin-glass phase, as seen
for K = 0.4 and 0.8 in Fig. 5. This abrupt phase di-
agram change and its renormalization-group mechanism
is the generalization to quenched random systems of the
stable-unstable fixed-point annihilation (Fig. 3) of the
Potts peninsular flow mechanism.
At the very top and bottom are the chaos and Lya-

punov exponents for the weak-coupling and strong-
coupling spin-glass phases. Amazingly, as measured by
the Lyapunov exponents, the weak-coupling spin-glass
phase is more chaotic than the strong-coupling spin-glass
phase.
We have also calculated phase diagrams of the Ising

spin glass with decaying long-range spin-glass interac-
tion ±K/r, where r is the separation between the spins
in units of the nearest-neighbor separation in the origi-
nal unrenormalized lattice. As seen in Fig. 7, as K is in-
creased from 0, the strong-coupling spin-glass phase fully
broadens becoming an intermediate phase between the
ferromagnetic (antiferromagnetic) and disordered phases,
and finally wholly replaces the disordered phase.

FIG. 7. Calculated phase diagrams of the Ising spin
glass with decaying long-range spin-glass interaction ±K/r,
where r is the separation between the spins in units of
the nearest-neighbor separation in the original unrenormal-
ized lattice. The ferromagnetic (F), antiferromagnetic (A),
strong-coupling spin-glass (SG), and disordered (D) phases
are marked. As K is increased from 0, the strong-coupling
spin-glass phase fully broadens becoming an intermediate
phase between the ferromagnetic (antiferromagnetic) and dis-
ordered phases (K = 0.45), and finally wholly replaces the
disordered phase (K = 0.80).

VII. CONCLUSION

We have seen that the introduction, to the spin-glass
system, of long-range ferromagnetic or spin-glass inter-
actions reveal a plethora of new phases, spin-glass-to-
spin-glass phase transitions, algebraic order, continu-
ously varying runaway and non-runaway chaos, Potts-
peninsular renormalization-group flows and precipitous
phase diagrams, fixed-distribution annihilation. The spin
glasses are clearly a rich repository of complex-system
behaviors.
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[4] T. Çağlar and A. N. Berker, Phase Transitions Be-
tween Different Spin-Glass Phases and Between Differ-
ent Chaoses in Quenched Random Chiral Systems, Phys.
Rev. E 96, 032103 (2017).

[5] S. Ostlund, Incommensurate and Commensurate Phases
in Asymmetric Clock Models, Phys. Rev. 24, 398 (1981).

[6] M. Kardar and A. N. Berker, Commensurate-
Incommensurate Phase Diagrams for Overlayers from a
Helical Potts Model, Phys. Rev. Lett. 48, 1552 (1982).

[7] S. R. McKay, A. N. Berker, and S. Kirkpatrick, Spin-
Glass Behavior in Frustrated Ising Models with Chaotic
Renormalization-Group Trajectories, Phys. Rev. Lett.
48, 767 (1982).

[8] S. R. McKay, A. N. Berker, and S. Kirkpatrick, Amor-
phously Packed, Frustrated Hierarchical Models: Chaotic
Rescaling and Spin-Glass Behavior, J. Appl. Phys. 53,
7974 (1982).



7

[9] A. N. Berker and S. R. McKay, Hierarchical Models and
Chaotic Spin Glasses, J. Stat. Phys. 36, 787 (1984).

[10] E. J. Hartford and S. R. McKay, Ising Spin-Glass
Critical and Multicritical Fixed Distributions from a
Renormalization-Group Calculation with Quenched Ran-
domness, J. Appl. Phys. 70, 6068 (1991).

[11] Z. Zhu, A. J. Ochoa, S. Schnabel, F. Hamze, and H. G.
Katzgraber, Best-Case Performance of Quantum Anneal-
ers on Native Spin-Glass Benchmarks: How Chaos Can
Affect Success Probabilities, Phys. Rev. A 93, 012317
(2016).

[12] W. Wang, J. Machta, and H. G. Katzgraber, Bond Chaos
in Spin Glasses Revealed through Thermal Boundary
Conditions, Phys. Rev. B 93, 224414 (2016).

[13] L. A. Fernandez, E. Marinari, V. Martin-Mayor, G.
Parisi, and D. Yllanes, Temperature Chaos is a Non-
Local Effect, J. Stat. Mech. - Theory and Experiment,
123301 (2016).

[14] A. Billoire, L. A. Fernandez, A. Maiorano, E. Mari-
nari, V. Martin-Mayor, J. Moreno-Gordo, G. Parisi, F.
Ricci-Tersenghi, J.J. Ruiz-Lorenzo, Dynamic Variational
Study of Chaos: Spin Glasses in Three Dimensions, J.
Stat. Mech. - Theory and Experiment, 033302 (2018).

[15] W. Wang, M. Wallin, and J. Lidmar, Chaotic Temper-
ature and Bond Dependence of Four-Dimensional Gaus-
sian Spin Glasses with Partial Thermal Boundary Con-
ditions, Phys. Rev. E 98, 062122 (2018).

[16] R. Eldan, A Simple Approach to Chaos For p-Spin Mod-
els, J. Stat. Phys. 181, 1266 (2020).

[17] M. Baity-Jesi, E. Calore, A. Cruz, L. A. Fernandez, J. M.
Gil-Narvion, I. G.-A. Pemartin, A. Gordillo-Guerrero, D.
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