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The classical Heisenberg model has been solved in spatial d dimensins, exactly in d = 1 and by the
Migdal-Kadanoff approximation in d > 1, by using a Fourier-Legendre expansion. The phase transi-
tion temperatures, the energy densities, and the specific heats are calculated in arbitrary dimension
d. Fisher’s exact result is recovered in d = 1. The absence of an ordered phase, conventional or al-
gebraic (in contrast to the XY model yielding an algebraically ordered phase), is recovered in d = 2.
A conventionally ordered phase occurs at d > 2. This method opens the way to complex-system
calculations with Heisenberg local degrees of freedom.

I. LOWER-CRITICAL DIMENSIONS AND

COMPLEX SYSTEMS

The Migdal-Kadanoff approximation [1, 2] has added
much wide applicability to the already physically
grounded position-space renormalization-group methods
(Fig.1). A very easily learned and practiced proce-
dure, it is probably the most used renormalization-
group transformation todate and today. Among the
early achievements were the nonadjustly experimen-
tally matching global phase diagrams of surface systems
[3, 4] starting with known microscopic potentials and
the renormalization-group fixed line [5, 6] yielding the
algebraically ordered low-temperature phase of the XY
model in two dimensions. More applications, such as in
a variety percolation problems [7], high-temperature su-
perconductivity [8], ferromagnetic-antiferromagnetic [9]
and left-right chiral [10] spin glasses, etc. followed, also
quantitively obtaining the chaotic essence [11–13] of the
spin-glass phase. The lower-critical dimension dc be-
low which no ordering occurs has been correctly deter-
mined as dc = 1 for the Ising model [1, 2] and dc = 2
for the XY [5] model. Most recently, the changeover
from first- to second-order phase transitions of q-state
Potts models in d dimensions has been obtained by the
Migdal-Kadanoff approximation.[14] In complex ordering
systems with frozen microscopic disorder (quenched ran-
domness), dc = 2 has been determined for the random-
field Ising [15, 16] and XY models [17], and, yielding
a non-integer value, dc = 2.46 for Ising spin-glass sys-
tems [18] (but reaching lower dimensions under spin-glass
rewiring [9]). Study of the Migdal-Kadanoff approxima-
tion has led to the formulation of exactly soluble hier-
archical models [19–21], yielding a plethora of exactly
soluble models custom-fitted to the physical problems on
hand.[22–34]

A most important microscopic model system is the
Heisenberg model, defined by the Hamiltonian

− βH = J
∑

〈ij〉

~si · ~sj , (1)

bond-moving decimation
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d-1
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FIG. 1. From Ref.[35]: (a) Migdal-Kadanoff approximate
renormalization-group transformation for the d = 3 cubic lat-
tice with the length-rescaling factor of b = 2. (b) Construction
of the d = 3, b = 2 hierarchical lattice for which the Migdal-
Kadanoff recursion relation is exact. The renormalization-
group solution of a hierarchical lattice proceeds in the oppo-
site direction of its construction.

where β = 1/kBT , the classical spin ~si is the unit spheri-
cal vector at lattice site i and the sum is over all nearest-
neighbor pairs of sites. The Heisenberg model has not
been solved in the physical dimensions d = 2 and 3
by the Migdal-Kadanoff approximation or by any other
renormalization-group method.

II. MIGDAL-KADANOFF RENORMALIZATION

GROUP FOR THE HEISENBERG MODEL

In the first, bond-moving, step (Fig.1) of the Migdal-
Kadanoff transformation,

ũ(γ) = u(γ)2, (2)

where u(γ) is the exponentiated nearest-neighbor Hamil-
tonian and γ is the angle between the spherical unit vec-
tors ~si and ~sj . The tilda denotes bond-moved. Using the
Fourier-Legendre series,

u(γ) =

∞
∑

l=0

λlPl(cos(γ)), (3)
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FIG. 2. Migdal-Kadanoff Fourier-Legendre results of the in-
ternal energy and specific heat of the Heisenberg model in
d = 1, 2 from right to left in the curves. The d = 1 curves
coincide exactly with the exact calculation of Fisher [36]. In
d = 1, 2, there is no finite-temperature phase transition. In
d = 2, the specific heat has a finite-temperature peak, reflect-
ing short-range ordering [6, 9]. As seen in this figure, no such
peak occurs for the d = 1 Heisenberg model, in contrast to
the d = 1 Ising model.

with the expansion coefficient λl evaluated as

λl =
2l + 1

2

∫ 1

−1

u(γ)Pl(cos(γ)) d(cos(γ)). (4)

Thus, for the left side of Eq.(2),

λ̃l =
2l+ 1

2

∫ 1

−1

u(γ)u(γ)Pl(cos γ) d(cos γ) =
2l+ 1

2
·

∞
∑

l1=0

∞
∑

l2=0

λl1λl2

∫ 1

−1

Pl1(cos γ)Pl2(cos γ)Pl(cos γ) d(cos γ)

=
∞
∑

l1=0

∞
∑

l2=0

λl1λl2〈l1l200|l1l2l0〉
2, (5)

where the bracket notation is the Clebsch-Gordan co-
efficient with the restrictions l1 + l2 + l = 2s, s ∈ N;
|l1 − l2| ≤ l ≤ |l1 + l2|.
In the second, decimation, step of the Migdal-Kadanoff

transformation, a decimated bond is obtained by inte-
grating over the shared spin of two bonds,

u′(γ13) =

∫

ũ(γ12)ũ(γ23)
d~s2
4π

=

=

∞
∑

l1=0

∞
∑

l2=0

∫

λ̃l1 λ̃l2Pl1(cos γ12)Pl2(cos γ23)
d~s2
4π

, (6)

expressing the Legendre polynomials in terms of spherical
harmonics,

=
∞
∑

l1=0

∞
∑

l2=0

l1
∑

m1=−l1

l2
∑

m2=−l2

λ̃l1 λ̃l2

(4π)2

(2l1 + 1)(2l2 + 1)
·

∫

Y m1

l1
(~s1)Y

m1∗
l1

(~s2)Y
m2

l2
(~s2)Y

m2∗
l2

(~s3)
d~s2
4π

, (7)

evaluating the integral and summing over the resulting
delta functions,

=

∞
∑

l1=0

l1
∑

m1=−l1

λ̃2
l1

4π

(2l1 + 1)2
Y m1

l1
(~s1)Y

m1∗
l1

(~s3), (8)

due to occcuring dirac delta functions. Rearranging the
spherical harmonics back to Legendre polynomials and
combining with Eq.(5),

λ′
l =

1

(2l + 1)

(

∞
∑

l1=0

∞
∑

l2=0

λl1λl2〈l1l200|l1l2l0〉
2)2

, (9)

the full recursion relations of the renormalization-group
are obtained. Prime denotes renormalized. The bond-
moved λ̃ are from Eq.(5). Thus, the renormalization-
group flows are in terms of the Fourier-Legendre coeffi-
cients λ′

l({λl}). We have kept up to l = 50 in our numer-
ical calculations of the trajectories.

FIG. 3. Migdal-Kadanoff Fourier-Legendre results of the in-
ternal energy and specific heat of the Heisenberg model in
d = 3, 4, 5, 6. from top down in the curves. The phase tran-
sition points are marked with ×. The calculated specific
heat critical exponents are α = −1.45,−2.08,−2.76,−2.92
for d = 3, 4, 5, 6, respectively.

The renormalization-group trajectories are effected by
repeated applications of the above transformation. The
initial points of these trajectories are obtained from the
Hamiltonian in Eq.(1), which can be written as

− βH = J
∑

<ij>

~si · ~sj = J
∑

<ij>

cos γ. (10)

Using the plane-wave expansion for the term in the par-
tition function involving the two spins,

eJ cos γ =
∞
∑

l=0

(2l + 1)iljl(−iJ)Pl(cos γ) =
∞
∑

l=0

λlPl(cos γ),

(11)
where jl(−iJ) is a spherical Bessel function and Pl(cos γ)
is a Legendre polynomial.
With no approximation, after every decimation and af-

ter setting up the initial conditions, the coefficients {λl}
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are divided by the largest λl. This is equivalent to sub-
tracting a constant term from the Hamiltonian and pre-
vents numerical overflow problems in flows inside the or-
dered phase. It is also necessary in order to calculate the
free energy, the internal energy, and the specific heat, as
shown below.

FIG. 4. Upper panel: Appproaching the sink (after
50 renormalization-group iterations) of the sink of the
renormalization-group flows of the ordered low-temperature
phase of the d = 3 Heisenberg model. This potential func-
tion, in terms of the spherical coordinate angles θ and φ of
one spin with respect to the other, is reconstructed from the
renormalized Fourier-Legendre coefficients, given in the lower
panel. Lower panel: Fourier-Legendre coefficients of the fixed
point that is the sink of the renormalization-group flows of
the ordered low-temperature phase of the d = 3 Heisenberg
model. The lines show λl = (2l+1)λ0, valid for a delta func-
tion. It seen that this relation is satisfied to a higher value
of l when a higher number of Fourier-Legendre coefficients is
kept.

III. RENORMALIZATION-GROUP FLOWS OF

THE FOURIER-LEGENDRE COEFFICIENTS

AND PHASE TRANSITIONS

Under repeated applications of the renormalization-
group transformation of Eq.(9), the Fouries-Legendre co-
efficients (FLC) flow to a stable fixed point, which is the
sink of a thermodynamic phase. The sink of the disor-
dered phase has λ0 = 1 and all other FLC equal to zero,
λl>0 = 0, meaning a constant u that is not dependent
on γ, namely a non-interacting system at the sink. This
sink attracts all points of the disordered phase, which it
epitomizes. In d = 1 and d = 2, the disordered sink is

the only sink and therefore the disordered phase is the
only thermodynamic phase of the system.
For d > 2, another sink also occurs with the FLC

non-zero and proportional to 2l + 1, making u(γ) a
delta function at zero separation of the spins as seen
in Fig.4. (In our numerical calculation, the higher the
number of kept FLC, the higher is the 2l + 1 propor-
tionality maintained, approximating the delta function.)
This is the sink of the low-temperature ferromagnetic
phase. The disordered sink continues, as the sink of
the high-temperature disordered phase. The boundary
of critical points between these two phases is controlled
by an unstable fixed point, shown in Fig.5. The largest
(and only positive, since the fixed point is singly un-
stable) eigenvalue exponent y of the derivative matrix
of the recursion relations (Eq.(9)) at the critical fixed
point gives the critical exponents, such the specific-heat
exponent α = 2 − d/y. We calculate, at the unsta-
ble critical fixed point, y = 0.87, 0.98, 1.05, 1.22 giving
α = −1.45,−2.08,−2.76,−2.92 for d = 3, 4, 5, 6, respec-
tively.

IV. RENORMALIZATION-GROUP

CALCULATION OF FREE ENERGY, ENERGY

DENSITY, AND SPECIFIC HEAT OF THE

HEISENBERG MODEL

The Migdal-Kadanoff renormalization-group yields the
entire statistical mechanics of the system, at and away
from the phase transitions, including the thermodynamic
quantities. The calculation of the latter requires follow-
ing the entire renormalization-group trajectories to the
sink. The logarithm of the dividing element at each op-
eration above, namely the subtractive constant G(n) =
ln(λmax), where n indicates the (n)th renormalization-
group transformation and λmax is the dividing largest
FLC, summed over the trajectory, yields the free energy
and therefore the thermodynamic densities.
The dimensionless free energy per bond f = F/kN

is thus obtained by summing the constants generated at
each renormalization-group step,

f =
1

N
ln

∫

{si}

e−βH =
∑

n=0

G(n)

bdn
, (12)

where N is the number of bonds in the initial unrenor-
malized system, the first integral is over all states of the
system, the second sum is over all renormalization-group
steps n, G(0) is the constant from the first division at the
beginning of the trajectory. This sum quickly converges
numerically.
A derivative of the free energy f with respect to J

gives the energy density < ~si · ~sj >. From the dimen-
sionless free energy per bond f , the specific heat C/kN
is calculated as

S

kN
= f − J

∂f

∂J
(13)
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FIG. 5. The fixed-point potential u(γ) of the critical point of
the d = 3 Heisenberg model. This potential function, in terms
of the spherical coordinate angles θ and φ of one spin with
respect to the other, is reconstructed from the renormalized
coefficients of the Fourier-Legendre coefficients.

C

kN
= T

∂(S/kN)

∂T
= −J

∂(S/kN)

∂J
. (14)

The calculated energy desities and specific heats are
given in Figs.2 and 3 for d = 1, 2, 3, 4, 5, 6. The d =
1 curves coincide exactly with the exact calculation of
Fisher [36]. In d = 1, 2, there is no finite-temperature
phase transition. In d = 2, the specific heat has a finite-
temperature peak, reflecting short-range ordering [6, 9].
As seen in Fig.2, no such peak occurs for the d = 1
Heisenberg model, in contrast to the d = 1 Ising model.

V. CONCLUSION

We have constructed the Migdal-Kadanoff
renormalization-group approximation for the Heisenberg
model in d dimensions and have analyzed the global
renormalization-group flows, obtaining fixed points,
free energies, internal energies, and specific heats. The
procedure can now be applied to Heisenberg spin glasses
and Heisenberg random-field systems, and other such
complex systems.
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