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The random-field XY model is studied in spatial dimensions d = 3 and 4, and in-between, as
the limit q → ∞ of the q-state clock models, by the exact renormalization-group solution of the
hierarchical lattice or, equivalently, the Migdal-Kadanoff approximation to the hypercubic lattices.
The lower-critical dimension is determined between 3.81 < dc < 4. When the random-field is scaled
with q, a line segment of zero-temperature criticality is found in d = 3. When the random-field is
scaled with q2, a universal phase diagram is found at intermediate temperatures in d = 3.

I. INTRODUCTION: ISING AND XY

LOWER-CRITICAL DIMENSIONS

Quenched randomness strongly affects the occurrence
of order at low spatial dimension d, reflected as the lower-
critical dimension dc below which no ordering occurs for
a given class of systems. In the random-magnetic-field
n = 1 component spin Ising model, after a strong ex-
perimental and theoretical controversy between dc = 2
claims [1–3] and dc = 3 claims [4], the issue was set-
tled for dc = 2.[5, 6] The fact that dc is not 3 fell in
contradiction with the prediction of a dimensional shift
of 2 due to random fields coming from all-order field-
theoretic expansions from d = 6 down to d = 1 [7], which
indeed is a considersble distance to expand upon for a
small-parameter expansion of ǫ = 6 − d. In this study,
the logically next model, namely the n = 2 components
spin XY model under random fields is examined and sur-
prising results are obtained, this time in near-agreement
with the dimensional shift of 2, but also with an interest-
ing zero-temperature critical line segment and a universal
scaled finite-temperature phase diagram.

Random-field Ising results supporting dc = 2
were obtained [5, 6] by the Migdal-Kadanoff [8, 9]
renormalization-group calculations in d = 2 (no random-
field order), d = 2.32 (random-field order), and
d = 3 (more random-field order). In the same
vein, for the random-field XY model, Migdal-Kadanoff
renormalization-group calculations are done here in
d = 3 and 4, and in between. The Migdal-Kadanoff
renormalization-group calculation (Fig. 1) is a highly
successful, flexible, and therefore most used todate and
today, physically motivated approximation for hypercu-
bic lattices and, simultaneously, an exact calculation for
d-dimensional hierarchical lattices [10–12]. The hier-
archical lattice connection makes the Migdal-Kadanoff
procedure a physically realizable approximation. For
recent work using hierarchical lattices, see Refs. [14–
21]. Migdal-Kadanoff-hierarchical-lattices correctly give
the lower-critical dimensions of dc = 1 of the Ising

model [8, 9], dc = 2 of the XY [22, 23] and (n = 3
spin components) Heisenberg [24] models in the absence
of quenched randomness. For the much more complex
system with competing quenched-random interactions,
Migdal-Kadanoff gives the non-integer dc = 2.46 for the
Ising spin-glass system.[25–31] In addition to giving the
lower-critical temperatures, it yields such diverse results
as, e.g., the low-temperature algebraic order of the d = 2
XY model [22, 23], the chaotic nature [32–34] of the
ferromagnetic-antiferromagnetic [35] and left-right chiral
[36] Ising spin glasses, and the changeover from second-
to first-order phase transitions of q-state Potts models in
d = 2 and 3.[37]
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FIG. 1. From Ref.[38]: (a) Migdal-Kadanoff approximate
renormalization-group transformation for the d = 3 cubic
lattice with the length-rescaling factor of b = 2. (b) Con-
struction of the d = 3, b = 2 hierarchical lattice for which
the Migdal-Kadanoff recursion relation is exact. For general
spatial dimension d, the bond-moving is (bd−1)-fold. The
renormalization-group solution of a hierarchical lattice pro-
ceeds in the opposite direction of its construction.

II. MODEL AND METHOD

The XY model is approached as the q → ∞ limit of
the q-state clock models. In the q-state clock models,
at each site i of the lattice, a planar unit spin ~si can
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FIG. 2. Phase diagrams for (q = 7, 10, 20, 50, 100, 150)-state
random-field clock models in d = 3, occurring in the figure
respectively from high field to low field. Disordered and fer-
romagnetic phases occur at high temperature-high field and
low temperature-low field, respectively. It is seen that the
ferromagnetic phase, in random field, disappears as q → ∞,
indicating that no ferromagnetic phase occurs in the random-
field XY model at non-zero temperature in d = 3. However,
for high q, the ordered phase extends to qH/J = 5.1 at zero
temperature, as also seen in the left box. For high q, the zero-
field ferromagnetic transition temperature saturates, as also
seen in Ref.[38] and in the left box in this figure.

FIG. 3. Phase diagrams for (q = 7, 10, 20, 50, 100, 150)-state
random-field clock models in d = 3. At low temperature,
the curves are, from low field to high field, q = 7, 10 and
indistinguishably q = 20, 50, 100, 150. It is seen that, when
the random field is scaled with q2, a universal phase diagram
is found above low temperature for high q.

point in one of q directions in the plane, namely with
the angle θk = k(2π/q), where k = 0, 1, ..., q − 1. A
detailed renormalization-group study on the phase tran-
sitions and thermodynamics of the q-state clock models,
without quenched randomness, has been done.[38] The
currently studied q-state clock model, with quenched ran-
dom fields, is defined by the Hamiltonian

− βH =
∑

<ij>

(J~si · ~sj + ~si · ~Hi + ~sj · ~Hj), (1)

where β = 1/kBT and sum is over all nearest-neighbor
pairs of spins. In each term in the sum, the random-fields

~Hi, ~Hj have magnitude H and each randomly points
along one of the allowed directions θk.
We solve this model using the Migdal-Kadanoff renor-

malization group. The local renormalization-group
transformation is given in Fig. 1 and is simple to im-
plement in systems without quenched randomness. With
our currently studied quenched random-field model, the
renormalization-group evolution of quenched random dis-
tributions has to be pursued. Initially, 5,000 nearest-
neighbor Hamiltonians are created, with 10,000 ran-
domly chosen magnetic field directions as described
above. From this distribution, bd nearest-neighbor
Hamiltonians are randomly chosen, to effect the local
Migdal-Kadanoff transformation and obtain a renormal-
ized nearest-neighbor Hamiltonian. This is repeated
5,000 times and the renormalized distribution is ob-
tained. Each nearest-neighbor Hamiltonian in the dis-
tribution is exponentiated and thus kept as a trans-
fer matrix.[35, 38] To conserve, in this distribution, the
(ij) ↔ (ji) and the random-field direction symmetries,
each transfer matrix is replicated by its transpose and
by the simultaneous cyclic permutations of the rows and
columns. Of the resulting 2q × 5000 matrices, 5,000 are
randomly chosen. Thus, the distribution continues as
5,000 q × q matrices.
The flows of the distributions determine the phase dia-

gram: Renormalization-group trajectories starting in the
ferromagnetic phase flow to the strong-coupling sink of
Jij → ∞, Hi = 0. Renormalization-group trajectories
starting in the disordered phase flow to the decoupled
sink of Jij , Hi = 0. The boundaries between these flow
basins are the phase boundaries.

III. d = 3 DIMENSIONS AND

ZERO-TEMPERATURE CRITICALITY

SEGMENT

Our calculated phase diagrams for (q =
7, 10, 20, 50, 100, 150)-state random-field clock mod-
els in d = 3 are in Fig. 2, occurring in the figure
respectively from high field to low field. Disordered and
ferromagnetic phases occur at high temperature-high
field and low temperature-low field, respectively. The
H/J values on the vertical axis are multiplied with q,
originally for better graphical visibility, but eventually
leading to a physical result, as seen here. Firstly,
note that the ferromagnetic region under random fields
recedes and disappears as q is increased. This result is
even more evident, when we recall that the vertical axis
values are amplified by a factor of q for better pictorial
visibility. The ferromagnetic phase, in random field,
disappearing as q → ∞ indicates that no ferromagnetic
phase occurs in the random-field XY model at non-zero
temperature in d = 3.
Secondly and quite interestingly, given our choice of

vertical axis values, it revealed that the ordered phase
extends at very low temperatures, for the high q to the
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universal value of qH/J = 5.1. This is more visible in
the left inset box of Fig. 2. Thus, at q → ∞, a line seg-
ment of zero-temperature critical points occurs between
qH/J = 0 and qH/J = 5.1. Zero-temperature criti-
cal segments and multicritical points have been found
before, under exact renormalization-group treatment, in
the d = 1 Blume-Emery-Griffiths model [39].
Thirdly, for high q, the zero-field ferromagnetic transi-

tion temperature saturates, as also seen in Ref.[38] and
in detail in the right inset box in Fig. 2. Furthermore,
when the vertical axis is scaled, not by q, but by q2, a
universal phase diagram emerges above low temperature
for high q, as seen in Fig. 3.

FIG. 4. Phase diagrams for (q = 3, 4, 5, 6, 7, 10)-state random-
field clock models in d = 3.32, occurring in the figure respec-
tively from high field to low field.

FIG. 5. The critical line segment, at zero temperature, is be-
tween qH/J = 0 and the qH/J values shown in this figure for
each dimension d. The values are consistent with a divergence
as d = 4 is approached.

IV. d = 4 DIMENSIONS AND THE

LOWER-CRITICAL DIMENSION

The phase diagrams for (q = 3, 4, 5, 6, 7, 10)-state
random-field clock models in d = 3.32 are shown in Fig.
4. It is again seen that the ferrromagnetic phase, under

random fields, recedes and disappears as q → ∞. Thus,

FIG. 6. Phase diagrams for (q = 7, 10, 20)-state random-field
clock models in d = 4, occurring in the figure respectively
from low field to high field.

no ferromagnetic phase occurs under random fields in
the XY model in d = 3.32. However, our calculation
again gives the zero-temperature critical segment, be-
tween qH/J = 0 and qH/J = 7.6 universally for all q
in d = 3.32.
The same results are obtained for d = 3.58 and 3.81,

with the zero-temperature critical segment expanding,
reaching qH/J = 10.2 and 13.9, respectively.
A qualitatively different picture occurs in the phase

diagrams for d = 4, seen in Fig. 5. Going from q = 7
to q = 10, the ferromagnetic phase slightly expands in
the random field, as opposed to drastically receding as
in the lower dimensions. Going from q = 10 to q = 20,
a much larger q interval, the ferromagnetic phase even
more slightly expands in the random field. Thus, the
ferromagnetic phase occurs, under random fields, for q →

∞ and for the XY model in d = 4.
We thus see that the lower-critical dimension for the

random-field XY model is between d = 3.81 and d = 4,
namely 3.81 < dc < 4.

V. CONCLUSION

In order to investigate the random-field XY model,
we have studied the random-field q-state clock models
for increasing q, for dimensions d = 3, 3.32, 3.58, 3.81, 4.
We find that for the random-field XY model, the lower-
critical dimension is between d = 3.81 and d = 4, namely
3.81 < dc < 4. At d < dc, we find a zero-temperature
segment of criticality, stretching from zero to a value of
qH/J that is q-independent for large q and that increases
as dc is approached.
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(TÜBA) is gratefully acknowledged.



4

[1] D. P. Belanger, A. R. King, and V. Jaccarino, Random-
field effects on critical behavior of diluted Ising antifer-
romagnets, Phys. Rev. Lett. 48, 1050 (1982).

[2] P.-Z. Wong and J. W. Cable, Hysteretic behavior of
the diluted random-field Ising system Fe0.70Mg0.30Cl2,
Phys. Rev. B 28, 5361 (1983).

[3] A. N. Berker, Ordering under random fields:
Renormalization-group arguments, Phys. Rev. B
29, 5243 (1984).

[4] H. Yoshizawa, R. A. Cowley, G. Shirane, R. J. Birgeneau,
H. J. Guggenheim, and H. Ikeda, Random-field effects in
two- and three-dimensional Ising antiferromagnets, Phys.
Rev. Lett. 48, 438 (1982).

[5] M. S. Cao and J. Machta, Migdal-Kadanoff study of the
random-field Ising model, Phys. Rev. B 48, 3177 (1993).

[6] A. Falicov, A. N. Berker, and S. R. McKay,
Renormalization-group theory of the random-field Ising
model in 3 dimensions, Phys. Rev. B 51, 8266 (1995).

[7] A. Aharony, Y. Imry, and S.-k. Ma, Lowering of dimen-
sionality in phase transitions with random fields, Phys.
Rev. Lett. 37, 1364 (1976).

[8] A. A. Migdal, Phase transitions in gauge and spin lattice
systems, Zh. Eksp. Teor. Fiz. 69, 1457 (1975) [Sov. Phys.
JETP 42, 743 (1976)].

[9] L. P. Kadanoff, Notes on Migdal’s recursion formulas,
Ann. Phys. (N.Y.) 100, 359 (1976).

[10] A. N. Berker and S. Ostlund, Renormalisation-group cal-
culations of finite systems: Order parameter and specific
heat for epitaxial ordering, J. Phys. C 12, 4961 (1979).

[11] R. B. Griffiths and M. Kaufman, Spin systems on hierar-
chical lattices: Introduction and thermodynamic Limit,
Phys. Rev. B 26, 5022R (1982).

[12] M. Kaufman and R. B. Griffiths, Spin systems on hierar-
chical lattices: 2. Some examples of soluble models, Phys.
Rev. B 30, 244 (1984).

[13] K. Jiang, J. Qiao, and Y. Lan, Chaotic renormalization
flow in the Potts model induced by long-range competi-
tion, Phys. Rev. E 103, 062117 (2021).

[14] G. Mograby, M. Derevyagin, G. V. Dunne, and A.
Teplyaev, Spectra of perfect state transfer Hamiltonians
on fractal-like graphs, J. Phys. A 54, 125301 (2021).

[15] I. Chio, R. K. W. Roeder, Chromatic zeros on hierar-
chical lattices and equidistribution on parameter space,
Annales de l’Institut Henri Poincaré D, 8, 491 (2021).
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