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The random-field XY model is studied in spatial dimensions d = 3 and 4, and in-between, as
the limit ¢ — oo of the g-state clock models, by the exact renormalization-group solution of the
hierarchical lattice or, equivalently, the Migdal-Kadanoff approximation to the hypercubic lattices.
The lower-critical dimension is determined between 3.81 < d. < 4. When the random-field is scaled
with ¢, a line segment of zero-temperature criticality is found in d = 3. When the random-field is
scaled with ¢?, a universal phase diagram is found at intermediate temperatures in d = 3.

I. INTRODUCTION: ISING AND XY
LOWER-CRITICAL DIMENSIONS

Quenched randomness strongly affects the occurrence
of order at low spatial dimension d, reflected as the lower-
critical dimension d. below which no ordering occurs for
a given class of systems. In the random-magnetic-field
n = 1 component spin Ising model, after a strong ex-
perimental and theoretical controversy between d, = 2
claims [1H3] and d. = 3 claims [4], the issue was set-
tled for d. = 2.3, 6] The fact that d. is not 3 fell in
contradiction with the prediction of a dimensional shift
of 2 due to random fields coming from all-order field-
theoretic expansions from d = 6 down tod =1 ﬂﬂ], which
indeed is a considersble distance to expand upon for a
small-parameter expansion of € = 6 — d. In this study,
the logically next model, namely the n = 2 components
spin XY model under random fields is examined and sur-
prising results are obtained, this time in near-agreement
with the dimensional shift of 2, but also with an interest-
ing zero-temperature critical line segment and a universal
scaled finite-temperature phase diagram.

Random-field Ising results supporting d. = 2
were obtained [5, 6] by the Migdal-Kadanoff [8, ]
renormalization-group calculations in d = 2 (no random-
field order), d = 2.32 (random-field order), and
d = 3 (more random-field order). In the same
vein, for the random-field XY model, Migdal-Kadanoff
renormalization-group calculations are done here in
d = 3 and 4, and in between. The Migdal-Kadanoff
renormalization-group calculation (Fig. 1) is a highly
successful, flexible, and therefore most used todate and
today, physically motivated approximation for hypercu-
bic lattices and, simultaneously, an exact calculation for
d-dimensional hierarchical lattices The hier-
archical lattice connection makes the Migdal-Kadanoff
procedure a physically realizable approximation. For
recent work using hierarchical lattices, see Refs. m
]. Migdal-Kadanoff-hierarchical-lattices correctly give
the lower-critical dimensions of d. = 1 of the Ising

model |8, ], d. = 2 of the XY [22, 23] and (n = 3
spin components) Heisenberg [24] models in the absence
of quenched randomness. For the much more complex
system with competing quenched-random interactions,
Migdal-Kadanoff gives the non-integer d. = 2.46 for the
Ising spin-glass system.] In addition to giving the
lower-critical temperatures, it yields such diverse results
as, e.g., the low-temperature algebraic order of the d = 2
XY model m, @], the chaotic nature @—@] of the
ferromagnetic-antiferromagnetic @] and left-right chiral
HE] Ising spin glasses, and the changeover from second-
to first-order phase transitions of ¢-state Potts models in
d =2 and 3.[37]
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FIG. 1. From Ref.[38]: (a) Migdal-Kadanoff approximate
renormalization-group transformation for the d = 3 cubic
lattice with the length-rescaling factor of b = 2. (b) Con-
struction of the d = 3,b = 2 hierarchical lattice for which
the Migdal-Kadanoff recursion relation is exact. For general
spatial dimension d, the bond-moving is (b*"')-fold. The
renormalization-group solution of a hierarchical lattice pro-
ceeds in the opposite direction of its construction.

II. MODEL AND METHOD

The XY model is approached as the ¢ — oo limit of
the g-state clock models. In the g¢-state clock models,
at each site i of the lattice, a planar unit spin §; can
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FIG. 2. Phase diagrams for (¢ = 7,10, 20, 50, 100, 150)-state
random-field clock models in d = 3, occurring in the figure
respectively from high field to low field. Disordered and fer-
romagnetic phases occur at high temperature-high field and
low temperature-low field, respectively. It is seen that the
ferromagnetic phase, in random field, disappears as ¢ — oo,
indicating that no ferromagnetic phase occurs in the random-
field XY model at non-zero temperature in d = 3. However,
for high g, the ordered phase extends to ¢H/J = 5.1 at zero
temperature, as also seen in the left box. For high ¢, the zero-
field ferromagnetic transition temperature saturates, as also
seen in Ref. @] and in the left box in this figure.
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FIG. 3. Phase diagrams for (¢ = 7,10, 20, 50, 100, 150)-state
random-field clock models in d = 3. At low temperature,
the curves are, from low field to high field, ¢ = 7,10 and
indistinguishably ¢ = 20, 50,100, 150. It is seen that, when
the random field is scaled with ¢, a universal phase diagram
is found above low temperature for high q.

point in one of ¢ directions in the plane, namely with
the angle 0, = k(27/q), where &k = 0,1,...,q — 1. A
detailed renormalization-group study on the phase tran-
sitions and thermodynamics of the g-state clock models,
without quenched randomness, has been done.@] The
currently studied ¢-state clock model, with quenched ran-
dom fields, is defined by the Hamiltonian

—BH =Y (J5 & +5 Hi+5-H), (1)

<ij>

where f = 1/kpT and sum is over all nearest-neighbor
pairs of spins. In each term in the sum, the random-fields

2

ﬁi,ﬁj have magnitude H and each randomly points
along one of the allowed directions 6.

We solve this model using the Migdal-Kadanoff renor-
malization group.  The local renormalization-group
transformation is given in Fig. 1 and is simple to im-
plement in systems without quenched randomness. With
our currently studied quenched random-field model, the
renormalization-group evolution of quenched random dis-
tributions has to be pursued. Initially, 5,000 nearest-
neighbor Hamiltonians are created, with 10,000 ran-
domly chosen magnetic field directions as described
above. From this distribution, b% nearest-neighbor
Hamiltonians are randomly chosen, to effect the local
Migdal-Kadanoff transformation and obtain a renormal-
ized nearest-neighbor Hamiltonian. This is repeated
5,000 times and the renormalized distribution is ob-
tained. Each nearest-neighbor Hamiltonian in the dis-
tribution is exponentiated and thus kept as a trans-
fer matrix.m, @] To conserve, in this distribution, the
(ij) +» (ji) and the random-field direction symmetries,
each transfer matrix is replicated by its transpose and
by the simultaneous cyclic permutations of the rows and
columns. Of the resulting 2¢ x 5000 matrices, 5,000 are
randomly chosen. Thus, the distribution continues as
5,000 g X ¢ matrices.

The flows of the distributions determine the phase dia-
gram: Renormalization-group trajectories starting in the
ferromagnetic phase flow to the strong-coupling sink of
Jij — 00, H; = 0. Renormalization-group trajectories
starting in the disordered phase flow to the decoupled
sink of J;;, H; = 0. The boundaries between these flow
basins are the phase boundaries.

III. d =3 DIMENSIONS AND
ZERO-TEMPERATURE CRITICALITY
SEGMENT

Our calculated phase diagrams for (g =
7,10,20,50,100, 150)-state random-field clock mod-
els in d = 3 are in Fig. 2, occurring in the figure
respectively from high field to low field. Disordered and
ferromagnetic phases occur at high temperature-high
field and low temperature-low field, respectively. The
H/J values on the vertical axis are multiplied with g,
originally for better graphical visibility, but eventually
leading to a physical result, as seen here. Firstly,
note that the ferromagnetic region under random fields
recedes and disappears as ¢ is increased. This result is
even more evident, when we recall that the vertical axis
values are amplified by a factor of ¢ for better pictorial
visibility. The ferromagnetic phase, in random field,
disappearing as ¢ — oo indicates that no ferromagnetic
phase occurs in the random-field XY model at non-zero
temperature in d = 3.

Secondly and quite interestingly, given our choice of
vertical axis values, it revealed that the ordered phase
extends at very low temperatures, for the high ¢ to the



universal value of ¢H/J = 5.1. This is more visible in
the left inset box of Fig. 2. Thus, at ¢ — oo, a line seg-
ment of zero-temperature critical points occurs between
gH/J = 0 and ¢H/J = 5.1. Zero-temperature criti-
cal segments and multicritical points have been found
before, under exact renormalization-group treatment, in
the d = 1 Blume-Emery-Griffiths model [39].

Thirdly, for high ¢, the zero-field ferromagnetic transi-
tion temperature saturates, as also seen in Ref. ﬂ@] and
in detail in the right inset box in Fig. 2. Furthermore,
when the vertical axis is scaled, not by ¢, but by ¢2, a
universal phase diagram emerges above low temperature
for high ¢, as seen in Fig. 3.
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FIG. 4. Phase diagrams for (¢ = 3,4, 5, 6, 7, 10)-state random-
field clock models in d = 3.32, occurring in the figure respec-
tively from high field to low field.
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FIG. 5. The critical line segment, at zero temperature, is be-
tween ¢H/J = 0 and the ¢H/J values shown in this figure for
each dimension d. The values are consistent with a divergence
as d = 4 is approached.

IV. d=4 DIMENSIONS AND THE
LOWER-CRITICAL DIMENSION

The phase diagrams for (¢ = 3,4,5,6,7,10)-state
random-field clock models in d = 3.32 are shown in Fig.
4. Tt is again seen that the ferrromagnetic phase, under

random fields, recedes and disappears as ¢ — oo. Thus,
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FIG. 6. Phase diagrams for (¢ = 7, 10, 20)-state random-field
clock models in d = 4, occurring in the figure respectively
from low field to high field.

no ferromagnetic phase occurs under random fields in
the XY model in d = 3.32. However, our calculation
again gives the zero-temperature critical segment, be-
tween ¢H/J = 0 and ¢H/J = 7.6 universally for all ¢
ind=3.32.

The same results are obtained for d = 3.58 and 3.81,
with the zero-temperature critical segment expanding,
reaching ¢H/J = 10.2 and 13.9, respectively.

A qualitatively different picture occurs in the phase
diagrams for d = 4, seen in Fig. 5. Going from ¢ = 7
to ¢ = 10, the ferromagnetic phase slightly expands in
the random field, as opposed to drastically receding as
in the lower dimensions. Going from ¢ = 10 to ¢ = 20,
a much larger ¢ interval, the ferromagnetic phase even
more slightly expands in the random field. Thus, the
ferromagnetic phase occurs, under random fields, for ¢ —
oo and for the XY model in d = 4.

We thus see that the lower-critical dimension for the
random-field XY model is between d = 3.81 and d = 4,
namely 3.81 < d, < 4.

V. CONCLUSION

In order to investigate the random-field XY model,
we have studied the random-field ¢-state clock models
for increasing ¢, for dimensions d = 3,3.32, 3.58, 3.81,4.
We find that for the random-field XY model, the lower-
critical dimension is between d = 3.81 and d = 4, namely
381 < d. < 4. At d < d., we find a zero-temperature
segment of criticality, stretching from zero to a value of
qH/J that is g-independent for large ¢ and that increases
as d. is approached.
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