
ar
X

iv
:2

10
5.

02
60

3v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  6

 M
ay

 2
02

1

Phase Transitions of the Variety of Random-Field Potts Models
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The phase transitions of random-field q-state Potts models in d = 3 dimensions are studied
by renormalization-group theory by exact solution of a hierarchical lattice and, equivalently, ap-
proximate Migdal-Kadanoff solutions of a cubic lattice. The recursion, under rescaling, of coupled
random-field and random-bond (induced under rescaling by random fields) coupled probability dis-
tributions is followed to obtain phase diagrams. Unlike the Ising model (q = 2), several types of
random fields can be defined for q ≥ 3 Potts models, including random-axis favored, random-axis
disfavored, random-axis randomly favored or disfavored cases, all of which are studied. Quantita-
tively very similar phase diagrams are obtained, for a given q for the three types of field randomness,
with the low-temperature ordered phase persisting, increasingly as temperature is lowered, up to
random-field threshold in d = 3, which is calculated for all temperatures below the zero-field critical
temperature. Phase diagrams thus obtained are compared as a function of q. The ordered phase in
the low-q models reaches higher temperatures, while in the high-q models it reaches higher random
fields. This renormalization-group calculation result is physically explained.

I. INTRODUCTION: THE VARIETY OF

RANDOM-FIELD POTTS MODELS

Quenched randomness strongly and distinctively af-
fects phases and phase boundaries. Random bonds
change the critical exponents of second-order phase tran-
sitions if the nonrandom specific heat critical exponent
α is positive [1, 2]. In fact, the nonrandom specific heat
critical exponent α is proportional to the crossover expo-
nent from nonrandom criticality [3]. On the other hand,
α is not proportional to the crossover exponent from ran-
dom criticality [2, 3]. Random bonds convert first-order
phase transitions to second-order phase transitions, with
even infinitesimal randomness in d = 2 dimensions [4–8]
and after a threshold amount of randomness in d ≥ 2 [6–
8]. The random introduction of competing bonds induces
a new phase, the spin-glass phase, with the characterisic
signature of chaos under scale change [9–11]. Random
fields eliminate ordered phases in low dimensions [12]. In
fact, for the Ising model, an extended experimental con-
troversy on the lower-critical dimension (at and below
which no ordering occurs) being dc = 2 [13, 14] or dc = 3
[15] was eventually settled for dc = 2, as supported by
renormalization-group calculations [16–18].
The previously controversial Ising model is the q = 2

state case of the Potts models, defined by the Hamilto-
nian

− βH =
∑

〈ij〉

Jδ(si, sj) , (1)

where β = 1/kBT , at site i the spin si = 1, 2, ..., q can be
in q different states, the delta function δ(si, sj) = 1(0)
for si = sj(si 6= sj), and 〈ij〉 denotes summation over all
nearest-neighbor pairs of sites. We now include random
fields:

− βH =
∑

〈ij〉

[Jδ(si, sj) +Hiδ(si, ui) +Hjδ(sj , uj)] , (2)

where ui = 1, 2, ..., q is frozen randomly at each site i
with local field Hi. For the Ising case of q = 2, a random
field Hi on the spin si simultaneously favors one of the
two states and disfavors the other state, independently
of the sign of Hi. For the q ≥ 3 Potts models, on the
other hand, we can distinguish three different random-
field models: (1) For Hi = H > 0, the random field
at each site i favors one random state ui and disfavors
the other q − 1 > 1 states; (2) for Hi = −H < 0, the
random field at each site i disfavors one random state
ui and favors the other q − 1 > 1 states; (3) for Hi =
±H randomly, the random field at each site i randomly
favors or disfavors one random state ui and, respectively,
disfavors or favors the other q − 1 > 1 states. These
different random-field models correspond to random-axis
favored, random-axis unfavored, random-axis randomly
favored or disfavored models. We have solved all three of
these random-field models in d = 3 dimensions.

II. METHOD: GLOBAL

RENORMALIZATION-GROUP THEORY OF

QUENCHED PROBABILITY DISTRIBUTIONS

Detailed phase diagrams for systems with quenched
randomness are obtained by global renormalization-
group theory, where the quenched coupled probability
distribution of the interactions renormalizes under scale
change and is followed as trajectories of the quenched
probability distribution function [3, 18]. We solve our
systems as an exact solution of a d = 3 hierarchical model
[19–21], which is equivalently the Migdal-Kadanoff ap-
proximation [22, 23] for the cubic lattice (Fig. 1). As
seen in Fig. 1(b), hierarchical models are models ob-
tained by self-imbedding a graph ad infinitum [19–21].
The exact renormalization-group solution of the hierar-
chical model is obtained in the reverse direction, by sum-
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ming over the internal spins of the innermost graphs at
each renormalization-group step. The Migdal-Kadanof
approximation, on the other hand, is an intuitive approx-
imation in which, at each renormalization-group step,
bonds are moved and decimation is done, as in Fig.
1(a). The renormalization-group recursion relations for
the hierarchical model and the Migdal-Kadanoff approx-
imation in Fig. 1 are identical, which ascertains that
the Migdal-Kadanoff approximation is a physically real-
izable, robust approximation. Thus, this hierarchical-
model/Migdal-Kadanoff approach correctly yields the
lower-critical dimensions of Ising [25], Potts [19], XY
models [25, 26], the low-temperature critical phases of
the antiferromagnetic Potts [27–29] and d = 2 XY mod-
els [25, 26], the lower-critical dimensions of the spin-glass
[30, 31] and random-field Ising [18] models, chaos under
rescaling in spin glasses [32], the experimental phase di-
agrams of surface systems [33], the phase diagrams of
high-temperature superconductors [34], etc. Other phys-
ically realizable approximations have also been used in
studies of polymers [35, 36], disordered alloys [37], and
turbulence [38]. Recent works using exactly soluble hier-
archical models are in Refs. [39–47].

bond-moving decimation

K b
d-1
K K'

(a)

(b)

...

b
d-1
K

FIG. 1. (a) Migdal-Kadanoff approximate renormalization-
group transformation for the d = 3 cubic lattice with the
length-rescaling factor of b = 2. (b) Construction of the
d = 3, b = 2 hierarchical lattice for which the Migdal-Kadanoff
recursion relations are exact. The renormalization-group solu-
tion of a hierarchical lattice proceeds in the opposite direction
of its construction. From [19, 24].

The renormalization of the quenched coupled proba-
bility distribution is done by [3, 18]

P ′(K′
i′j′) =

∫







i′j′
∏

ij

dKijP (Kij)







δ(K′
i′j′ −R({Kij})),

(3)
where Kij ≡ {Kij(si, sj)} is the general quenched-
random nearest-neighbor interaction matrix occur-
ring in the generalization of Eq.(2) induced by the
renormalization-group transformation,

− βH =
∑

〈ij〉

Kij(si, sj) , (4)

where, with no loss of generality, for each (i, j), the
same constant has been subtracted from each element

in Kij , so that the maximal element is 0 and all other
elements are negative. Primes refer to the renormalized
system. R({Kij}) represents the local recursion rela-
tion, obtained by summing over the internal spins of
the graph of the hierarchical model or, equivalently, by
bond-moving and decimation in the Migdal-Kadanoff ap-
proximation. The different asymptotic renormalization-
group flows of P (Kij) identify the different phases and
phase transitions of the system: All trajectories originat-
ing within the ordered phase flow to the stable fixed point
(phase sink) of the ordered phase with Kij = 0,−∞ for
i = j, i 6= j, respectively. All trajectories originating
within the disordered phase flow to the stable fixed point
(phase sink) of the disordered phase with Kij = 0 for
all i, j. The trajectories originating on the boundary be-
tween the two phases flow to an unstable strong coupling
fixed point with Kij = 0,−∞ for i = j, i 6= j, respec-
tively.
Equation (3) is effected as follows: For the calculations

for given q, a distribution of qN nearest-neighbor < ij >
transfer matrices

Eij(si, sj) = eKij(si,sj) , (5)

is constructed at the beginning of the trajectory, from
Eq.(2) and the type of the Random-Field Potts Model
(1), (2), or (3). At the beginning of the trajectory, the
fields (Hi, ui, Hj, uj) entering Kij are chosen randomly
according to the rules of the random-field model. This
distribution is symmetrized with respect to < ij > by
augmenting it with the transpose matrices and with re-
spect to q by augmenting it with the matrices where si-
multaneously each row and column are cyclically aug-
mented. These symmetrization operations are done to
cure any small asymmetry artificially introduced by the
random numbers. Thus, at the end of the symmetriza-
tion operations, we have a quenched random distribution
of 2q2N transfer matrices. The factor q2 in the num-
ber of transfer matrices 2q2N is included to fully reflect
the multiplicity q2 of random-field directions (ui, uj) in
Eq.(2).
In the bond-moving step of the transformation, bd−1 =

4 transfer matrices, where b = 2 is the renormalization-
group length-rescaling factor, are randomly chosen from
the distribution and combined by multiplying the 4 el-
ements at the same position in the 4 matrices, to form
the bond-moved transfer matrix. With no loss of gener-
ality, each element of the bond-moved transfer matrix is
divided by the largest result of the fourfold multiplica-
tions, so the largest element of the bond-moved transfer
matrix is 1 and the others are between 1 and 0. This
division is to avoid numerical blow-ups during the global
renormalization-group flows. This process is repeated un-
til a new distribution of the bond-moved transfer matri-
ces with 2q2N elements is generated.
In the decimation step of the transformation, 2 trans-

fer matrices are randomly chosen and matrix-multiplied.
The largest element is set to 1 by division as above. This
is repeated until qN matrices are generated. This dis-
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FIG. 2. Calculated phase diagrams of the random-axis ran-
domly favored or disfavored random-field Potts models in
d = 3, for the number of states q = 2, 3, 4, 5, 6, 7. The curves
are for decreasing q along the increasing temperature axis and
along the decreasing random-field strength axis. The q = 2,
namely Ising case, is as in Ref.[18]. Thus, interestingly, the
ordered phase in the low-q models reaches higher tempera-
tures, while in the high-q models it reaches higher random
fields. A physical explanation is given in the text.

tribution is symmetrized with respect to < ij > by aug-
menting it with the transpose matrices and with respect
to q by augmenting it with the matrices where simulta-
neously each row and coulumn are cyclically augmented,
again to cure any small asymmetry artificially introduced
by the random numbers, reaching a distribution of renor-
malized transfer matrices with 2q2N elements. We have
found that N = 250 is sufficient to obtain smooth results,
giving up to 2q2N = 24,500 elements (for q = 7) in our
distribution of transfer matrices. This constitutes a sin-
gle renormalization-group transformation. The process
is then repeated, starting with the bond-moving step.

III. RESULTS: 18 PHASE DIAGRAMS FOR

THE RANDOM-FIELD POTTS MODELS FOR q =

2,3,4,5,6,7 STATES

The calculated phase diagrams of the (3) random-axis
randomly favored or disfavored random-field Potts mod-
els in d = 3, for the number of states q = 2, 3, 4, 5, 6, 7, are
given Fig. 2, in terms of temperature 1/J and random-

FIG. 3. Calculated phase diagrams for the differently de-
fined random-field Potts models: (1) random-axis favored, (2)
random-axis unfavored, (3) random-axis randomly favored or
disfavored models. The three differently defined models are
not expected to have superimposed phase diagrams for a given
q. This is seen in this figure for q = 3, 5, 7, where Models (1),
(2), (3) are not superimposed, but very closely track each
other. The triplet of curves are for decreasing q along the in-
creasing temperature axis and along the decreasing random-
field strength axis. The triplets are, for increasing field at low
temperatures, for Models (1,2,3), (1,3,2),(1,3,2) for q = 3, 5, 7
respectively. The three curves in the q = 3 triplet are not
distinguishable on the scale of this figure. We have also cal-
culated the three Model phase diagrams for q = 4, 6, not
shown in this figure for congestion reasons, and obtain the
same behavior of not superimposing but very closely track-
ing. As explained in Sec. I, for q = 2 (Ising), only one type
of random-field model exists.

field strength H/J . The q = 2, namely Ising case, is
as in Ref.[18]. The phase diagrams of the random Potts
models change with the number of states q. Interest-
ingly, the phase diagrams cross each other in proxim-
ity: The ordered phases of the low-q models reach higher
temperatures, while those of the high-q models reach
higher random fields. This has a physical explanation:
On the temperature axis, higher q introduces more en-
tropy and therefore lower free energy into the disordered
phase where a spin visits all its states. At low tempera-
ture in the high-random-field direction, spins differently
pinned onto a higher number of q − 1 nonordered states
cannot create a correlated nonordered island among each
other and are therefore less effective in disrupting order.
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As discussed in Sec. I, the differently defined
random-field Potts models: (1) Random-axis favored,
(2) random-axis unfavored, (3) random-axis randomly fa-
vored or disfavored models, are differently defined models
and are not expected to have superimposed phase dia-
grams for a given q. This is seen in Fig. 3, for q = 3, 5, 7,
where Models (1),(2),(3) are nor superimposed, but very
closely track each other. We have also calculated the
phase diagrams for the three different random-field mod-
els for q = 4, 6, not shown in Fig. 3 for congestion rea-
sons, and see the same behavior of not superimposing but
very closely tracking. As explained in Sec. I, for q = 2
(Ising), only one type of random-field model exists.

IV. CONCLUSION

The random-field phase diagrams for q = 2, 3, 4, 5, 6, 7
state Potts models have been calculated in spatial dimen-
sion d = 3. As a function of increasing q, the ordered
phase shows systematic excess or recess in the random-
field or temperature direction, respectively. This calcula-
tional results are explained by the differently pinned spins
not being able to correlate into nonordering islands and
by uncorrelated disordered spins visiting a larger number
of states, respectively. Similar behaviors can be expected
in quenched-random symmetry-broken systems, as the
simplicity of the Ising model is exceeded.
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